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INTRODUCTION

HTS modelling can be extremely
challenging

« Multiphysics often required

 Highly non-linear and inter-
dependent material laws

« High-aspect ratio mesh

Electroplating

Copper Stabilizer

= |lead to sensitive simulations when

it comes to predicting quench
nucleation and propagation
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INTRODUCTION

Our goals in this work are to accurately:

« Compare different electromagnetic formulations, E-J characteristics and tape architectures,
especially the Current Flow Diverter (CFD) tapes (3-D problems)

« Predict the hot-spot nucleation and propagation with temperature and voltage

« Investigate the “pre-quench” regime
NZPV enhancement
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ELECTROMAGNETIC FORMULATIONS

V formulation (electro-thermal)

« Describes a current continuity
(flow) equation:

V- (aVV) =0

 The current injection is imposed as a
weak constraint:

fmn Jas=1 Solving variable: V

- - = - - i : = —
- Numerically efficient simulations! Current density: /= -oVV

Magnetic Field: ? POLYTECHNIQUE e}
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ELECTROMAGNETIC FORMULATIONS

H(—¢) formulation (magneto-thermal)

Uses the strong equation

VX (pVXxH)+d;,(uH) =0

In a non-conducting region:

H=-V¢

olving variable: H (or ¢)

n

The current is imposed with a “cut”

(@]

urrent density: / =V xH (or 0)

Physically accurate simulations!
agnetic Field: H (or V¢)
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E-J CHARACTERISTIC

Very often, we observe that the classical g y ' . .
power-law generates a hot-spot too early in o
simulations (N. Riva, et al., SuST. 33(11), o0l P __
27, 114008, 2020) = |
E'E {Flux creep)é : (Flux flow) (Normal)
% 1072 ¢ ' ]
Power-law model (PLM) vs. piecewise =
resistivity model (PRM) =
Z 10 ¢ ]
7 Bezier control points
- PLM: Simple, but overshoots the =
voltage during flux flow 107 ¢ _ -
- - - Classical power-law model (PLM)
— Piecewise resistivity model (PRM))
« PRM: Better represents experimental 1070 = - — — —
10 10 10 10 10
Current density, J (MA /cm?)
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RESULTS

Simulated benchmark (COMSOL, 3-D | o 20% drop of J

« Multilayered tapes (silver, interface, REBCO,
buffer, Hastelloy and copper)

« Quench generated by a magnet (local drop of I,.)
« Experimental data available

100

9]
o

Current, I (A)

0 20 40 60 POLYTECHNIQUE - iy
: MONTREAL N
Time, ¢t (ms) WA

Gregory Giard — HTS Modelling 10



RESULTS

Commercial tape:
Electro-thermal simulations vs. Magneto-thermal simulations (power-law)
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- - ~Electro-thermal (Power-law) 86 - - ~Electro-thermal (Power-law)
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RESULTS

Commercial tape:
Power-law vs. piecewise resistivity (magneto-thermal)
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RESULTS

Commercial tape:
Comparing with experimental data

30
— Power-law
---------- Piecewise resistivity
257 — Experimental
> 20
= The voltage drop, not as
| g 10 much...
The voltage rise much =
2

better represented with
the piecewise resistivity
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RESULTS

Remarks for the commercial tape

« Electro-thermal simulations are probably good enough for commercial tapes (when
magnetodynamic effects are negligible)

« During the quench propagation, both models also give similar results

« Flux flow regime is important to consider in resistivity model
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RESULTS

CFD tape:
Let’'s compare the electro-thermal and magneto-thermal model (piecewise resistivity)

120 b //' ----- - ~ ——Magneto-thermal (Piecewise resistivity)
R4 1= = ~Electro-thermal (Piecewise resistivity)
] *—Experimental
100 | | i
‘\
- . The magneto-thermal

----- simulation better represents
the voltage rise and peak

(@)
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Initially, both
models give
very similar
results
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RESULTS

CFD tape:
And what about the temperature?
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RESULTS

Remarks for the CFD tape

« Power-law not shown for CFD tapes, but still overshoots the voltage as expected

« The idea of CFD architecture is to count on current transfer on the sides of the
tapes = magnetodynamic effects are not negligible

« CFD simulations are prone to a lot of convergence issues!
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SUMMARY AND OUTLOOK

« Multiple simulation approaches were tested on a relatively simple 3-D
benchmark

« For commercial tapes: V (numerically efficient) and H — ¢ (physically
accurate) formulations give almost identical results

« For more complex tape architectures (CFD): Electro-thermal (V)
simulations are often not sufficient

« Moreover: We always need to be careful on the resistivity model we are using,
the voltage rise in the pre-quench regime is extremely sensitive!
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SUMMARY AND OUTLOOK

Next steps

« Calibrate the piecewise resistivity with measurements (this summer)

n \A/irtual domain
), and its boundaries

‘1/,1."- / 7 Y V+n
‘ i *FN—F+

« Compute the minimum quench energy with H— ¢ P

+ Implement the benchmark in BELFEM i v s 7 <AV w
K\ / ‘. %) _'; -——‘W—,ﬁ I(k)
V% Ve

K

X
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B. De Sousa Alves et al., SuST 35 (2), 024001 (2021)

Gregory Giard - HTS Modelling



ACKNOWLEDGEMENT

i

rreererr

POLYTECHNIQUE
MONTREAL

. UNIVERSITE
%) D'INGENIERIE

GZE L

Grenoble Génie Electrique
Grenob/e Electrical Engineering

H BERKELEY LAB

Bringing Science Solutions to the World

Gregory Giard - HTS Modelling

CRSNG

Fonds de recherche
Nature et
technologies

p
Québec




