

HTS MODELLING Workgroup

Impact of porosity on trapped magnetic field and mechanical stresses in HTS bulks during PFM

9th International Workshop on Numerical Modelling of High Temperature Superconductors

Santiago Guijosa G.¹, Kévin Berger¹, Frederic Trillaud^{1,2}, Melika Hinaje¹

¹ Université de Lorraine, GREEN, F-54000 Nancy, France

² Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04350 CDMX, México

June 11, 2024

Introduction: HTS bulks as magnets

- > HTS bulks can act as cryo-permanent magnets after magnetization.
- > The circulation of induced persistent electrical current J_{sc} generates a "trapped" magnetic field $B_z \approx R J_c (T_o < T_c)$.
- Magnetic fields up to 10 times higher than conventional magnets can be achieved (1-17 T at low temperatures).

NMR Magnet. M. Takahashi et al., IEEE Trans. Appl. Supercond., 32(6) 2022

Axial flux HTS motor. Rémi Dorget et al Materials 2021, 14, 2847

Santiago Guijosa G.

9th International Workshop on Numerical Modelling of High Temperature Superconductors

Copper armature

winding

HTS coil

HTS shield

Pulsed field magnetization (PFM)

≻Pros:

- Compact
- Fast
- In situ magnetization
- Multi-PFM

≻Cons:

T. Oka, K. Yokoyama, Ashikaga University, Japan

- Low trapped fields compared to ZFC/FC (Max. $\approx 5 \text{ T} @ 29 \text{K}$)
- Large heat generation due to rapid flux motion
- For larger applied fields or bulks, larger capacitor banks are needed

Santiago Guijosa G.

Problems

- Cracks, pores (addressed here) and inhomogeneous J_c ?
- Mechanical crack before and during PFM or influence of Growth Section Boundaries?

Santiago Guijosa G.

Porosity in HTS bulks

Formed during melt-growth

Sizes of 50-250 μm (» ξ)
TSMG: 15-30% V_p
TSIG: 4-10 % V_p

Devendra K Namburi et al 2021 Supercond. Sci. Technol. 34 053002

- Research shows impact on:
 - *J_c* and trapped field magnitude (Josef Baumann *et al* 2023 *J. Eur. Ceramic Society*)
 - Mechanical properties (N. Sakai *et al* 2000 *Su.S.Tec.***13** 770773, Jasmin V. J. Congreve *et al* 2019 IEEE T.A.S **29-**5)

Santiago Guijosa G.

Multiphysics model in COMSOL

Santiago Guijosa G.

9th International Workshop on Numerical Modelling of High Temperature Superconductors

boundaries

Multiphysics model in COMSOL

• <u>Case study:</u>

- > 2D Infinitely long cylinder approx.
- YBCO bulk 1% porosity
- Given porosity surface area (S_p%):
 - Random a-b axis of ellipse [125-250 μm]
 - Randomly distributed inside bulk

Symbol	Parameter (YBCO)	Value
$ ho_n$	Normal Resistivity	3.5x10 ⁻⁶ Ω.m
n	<i>E-J</i> power law <i>n</i> -value	21
B_0	Fitting parameter Kim	1.3 T
γ_m	Mass density	5900 Kg/m ³
J_{c0}	Critical current density	5x10 ⁸ A/m ²
T_o	Operating temperature	65 K
T_{c}	Critical temperature	92 K
E_{c}	Electric field criteria	1x10 ⁻⁴ V/m
α	Thermal expansion coef.	1x10 ⁻⁵ K ⁻¹
B _{max}	Max. applied magnetic field	4 T
τ	Pulse time constant	13 ms
к-ab	Thermal conductivity	20 W/m.K
E	Young's modulus	103 MPa
v	Poisson's ratio	0.33
σ_F	Fracture strength	75 MPa
h	Heat conduction coef.	750 W/(K.m ²)

Santiago Guijosa G.

Devendra K Namburi et al 2020 *Supercond. Sci. Technol.* **33** 115012 9th International Workshop on Numerical Modelling of High Temperature Superconductors

Results: Magnetic flux density

Santiago Guijosa G.

Results: Thermal impact

Temperature evolution

Temperature distribution

Ze Jing and Mark D Ainslie 2020 Supercond. Sci. Technol. 33 084006

Results: Mechanical impact

Fracture stress comparison

Von mises stress distribution

Santiago Guijosa G.

Summary

➤A 2D numerical model is proposed as a first approach to study the impact of porosity in the magnetization of bulk HTS by PFM.

≻Porosity shows an impact during PFM in:

≻ Trapped field distribution

≻ Local and abrupt temperature rise

≻ High mechanical tensile stresses (possible fracture)

≻Future work:

> Studying the current paths around pores and related rise of temperature

- ➤ 3D model (2D could overestimate the increase in temperature)
- > Investigation on mechanical and thermal stresses contributions

Yanxing Cheng et al 2021 Supercond. Sci. Technol. 34 125017

Thank you for your attention!

Contact: sguijosa278@gmail.com

Santiago Guijosa G.