Coupled Axial and Transverse Currents Method for Periodic Superconductors

Julien Dular¹

Fredrik Magnus^{1,2} Erik Schnaubelt^{1,3} Arjan Verweij¹ Mariusz Wozniak¹

¹CERN, Meyrin, Switzerland ²Norwegian University of Science and Technology, Trondheim, Norway ³Technical University of Darmstadt, Darmstadt, Germany

13 June 2024

Outline

Periodic composite superconductors

Coupled Axial and Transverse Currents (I) method

Implementation, results and applications

Outlook and conclusions

Periodic SC

CATI Method

Results

Outlook

Superconducting magnet electromagnetic modelling

- Quench protection design requires good AC loss models.
- Example: CLIQ (coupling-loss induced quench) devices.
- Magnet geometry is multi-scale. Small-scale, 3D, transient, effects contribute significantly to AC losses.
 Need for accurate modelling down to the strand level.

CALL Metho

lesults

From strands to magnet

Fully discretized magnet models are very heavy to solve. \Rightarrow Lightweight, intermediate models are necessary.

Homogenization of small-scale properties:

Homogenized parameters:

magnetization, lumped resistance and inductance.

CATI Method

Results

From strands to magnet

Fully discretized magnet models are very heavy to solve. \Rightarrow Lightweight, intermediate models are necessary.

Homogenization of small-scale properties:

Homogenized parameters:

magnetization, lumped resistance and inductance.

Back to the small-scales: AC losses in strands (and cables).

⇒ CATI method

Problem statement - Multifilamentary strand

Multifilamentary strand subject to:

- transport current,
- transverse magnetic field,

with a range of frequencies and amplitudes.

Output: transient AC losses and magnetization.

Periodic SC

CATI Method

Results

Dutlook

Composite strand dynamics

 $m{h}_{\mathsf{applied}}$

Coupling currents

Loss contributions:

Fro. 2. Current paths in some of the superconducting filaments at the surface and the normal metal matrix of a twisted, multifilament wire which is exposed to a uniform changing field. The interior filaments are not shown since they carry no current.

[Morgan, 1970]

Coupling currents in the matrix.

Periodic SC

CATI Method

Results

Outlook

Composite strand dynamics

 $m{h}_{\mathsf{applied}}$

Coupling currents

Loss contributions:

Fro. 2. Current paths in some of the superconducting filaments at the surface and the normal metal matrix of a twisted, multifilament wire which is exposed to a uniform changing field. The interior filaments are not shown since they carry no current.

[Morgan, 1970]

Coupling currents in the matrix.

- Eddy current in the matrix.
- ► Hysteresis in SC filaments.

Magnetization contributions:

Matrix + filaments.

These different contributions interact with each other.

Periodic SC

Periodic composite superconductors

Coupled Axial and Transverse Currents (I) method

Implementation, results and applications

Outlook and conclusions

Periodic S

CATI Method

Results

Outlook

Equations and FE formulation

Magneto-quasistatic equations and constitutive laws (T is fixed):

$$\begin{cases} \operatorname{div} \boldsymbol{b} = 0, & (\operatorname{Gauss}) \\ \operatorname{curl} \boldsymbol{h} = \boldsymbol{j}, & (\operatorname{Ampère}) \\ \operatorname{curl} \boldsymbol{e} = -\partial_t \boldsymbol{b}, & (\operatorname{Faraday}) \end{cases} \text{ with } \begin{cases} \boldsymbol{b} = \mu_0 \boldsymbol{h}, \\ \boldsymbol{e} = \rho(\boldsymbol{j}, \boldsymbol{b}) \boldsymbol{j}, \end{cases}$$

with the (nonlinear) power law for the resistivity in SC filaments:

$$ho(oldsymbol{j},oldsymbol{b}) = rac{e_c}{j_c(oldsymbol{b})} \left(rac{\|oldsymbol{j}\|}{j_c(oldsymbol{b})}
ight)^{n-1}$$

CATI Method

00000

Outlook

Equations and FE formulation

Magneto-quasistatic equations and constitutive laws (T is fixed):

$$\begin{cases} \operatorname{div} \boldsymbol{b} = 0, & (\operatorname{Gauss}) \\ \operatorname{curl} \boldsymbol{h} = \boldsymbol{j}, & (\operatorname{Ampère}) \\ \operatorname{curl} \boldsymbol{e} = -\partial_t \boldsymbol{b}, & (\operatorname{Faraday}) \end{cases} \text{ with } \begin{cases} \boldsymbol{b} = \mu_0 \boldsymbol{h}, \\ \boldsymbol{e} = \rho(\boldsymbol{j}, \boldsymbol{b}) \boldsymbol{j}, \end{cases}$$

with the (nonlinear) power law for the resistivity in SC filaments:

$$\rho(\boldsymbol{j}, \boldsymbol{b}) = \frac{e_c}{j_c(\boldsymbol{b})} \left(\frac{\|\boldsymbol{j}\|}{j_c(\boldsymbol{b})}\right)^{n-1}$$

CATI Method

00000

Periodic SC

Efficient choice for SC: $h-\phi$ -formulation

- Weak form of Faraday's law.
- Find $h \in \mathcal{H}(\Omega)$ such that, $\forall h' \in \mathcal{H}_0(\Omega)$:

$$\left(\partial_t(\mu_0 \boldsymbol{h})\;, \boldsymbol{h}'\right)_\Omega + \left(\rho \operatorname{\mathbf{curl}} \boldsymbol{h}\;, \operatorname{\mathbf{curl}}\; \boldsymbol{h}'\right)_{\Omega_{\mathrm{c}}} = 0.$$

• It ensures curl h = 0 in Ω_c^C ("cuts").

CATI method

- 3D model: computationally expensive.
- ▶ We propose a pair of 2D models.

Inspired from [Satiramatekul, Bouillault, 2005].

Coupled Axial and Transverse currents (I), or CATI method

▶ 2D models written on $2\ell = 2p/6$.

- Global quantities: I_i , V_i , \tilde{I}_i , \tilde{V}_i (currents and voltages).
- Coupling via circuit equations.

Circuit coupling equations

Exploiting periodicity:

$$\tilde{I}_2 = I_3 - I_1,$$
$$V_2 = \tilde{V}_3 - \tilde{V}_1.$$

Periodic S

CATI Method

Results

Outloc

Length correction factor

Without correction: overestimation of flux and current.

- Currents and voltages vary continuously along the wire.
- We are assuming constant values over 2ℓ :

• We reduce ℓ to ℓ^* to account for this:

$$\ell^* = \frac{\sin(2\pi\ell/p)}{2\pi\ell/p} \ \ell.$$

For $2\ell = 2p/6$ (common hexagonal pattern), $\ell^*/\ell = 0.8270$.

Periodic composite superconductors

Coupled Axial and Transverse Currents (I) method

Implementation, results and applications

Outlook and conclusions

Periodic So

CATI Method

Results

Outlook

Implementation - GetDP and FiQuS

- Free and open-source Finite element Quench Simulator.
- Coded in Python, uses the FE framework Gmsh & GetDP.
- HTS Pancake coils, multipole magnets, CCT magnets...

Verification with 3D reference

CATI method vs. 3D reference model:

- ▶ 54 Nb-Ti filaments, p = 19 mm.
- ► $j_{c,Nb-Ti}(\boldsymbol{b}), \sigma_{Cu}(\boldsymbol{b}), T = 1.9 \text{ K}.$
- ▶ Field $b_{max} = 0.5$ T, f = 10 Hz.
- 3D: 970k DOFs, 150h.
 CATI: 30k DOFs, 1h.
- $\blacktriangleright \text{ Relative difference on AC losses} < 5\%.$

Periodic SC

CATI Method

Results

()0

Loss map with no transport current

riodic SC

CALLMetho

Results

Outlook

Periodic composite superconductors

Coupled Axial and Transverse Currents (I) method

Implementation, results and applications

Outlook and conclusions

Periodic S 00000 CATI Method

Results

Outlook • 00000

Outlooks and extensions

Extension to Rutherford cable geometries

Homogenized strands from detailed CATI results?

- Tilted current density vectors?
- ▶ Nb₃Sn strands (diffusion barriers, unreacted materials).
- ▶ MgB₂ strands (ferromagnetic matrix and loss).
- Bi-2212 or Bi-2223 wires.
- AC losses change due to strand cabling deformation.

[Hopkins, 2024]

Periodic S 00000 CATI Method

Results

Outlook

Outlook - Homogenization of full-scale magnets

Strand macroscopic response: magnetization and losses.

with homogenized parameters: magnetization, lumped R and L.

- Either identified a priori (simple homogenization),
- or resolved on-the-fly (multi-scale resolution).

Conclusions

Efficient 2D+2D model for AC losses (*h*- ϕ -formulation)

- Magnetodynamics (eddy currents).
- Nonlinear material properties.
- Fast and accurate.

Implemented in FiQuS, with GetDP/Gmsh

Open-source, modular, and highly flexible.

Outlooks

- 1. Extend the CATI method to cables.
- 2. Investigate different LTS/HTS wire and cable geometries.
- 3. Exploit the results in homogenized models.

Joint work with the STEAM team at CERN!

References

Analytical AC losses

- Morgan, G. H. (1970). Theoretical behavior of twisted multicore superconducting wire in a time-varying uniform magnetic field. Journal of Applied Physics, 41(9), 3673-3679.
- Campbell, A. M. (1982). A general treatment of losses in multifilamentary superconductors. Cryogenics, 22(1), 3-16.

Helicoidal transformation and coupled model first papers

- Nicolet, A., Zolla, F., and Guenneau, S. (2004). Modelling of twisted optical waveguides with edge elements. The European Physical Journal Applied Physics, 28(2), 153-157.
- Satiramatekul, T., and Bouillault, F. (2005). Magnetization of coupled and noncoupled superconducting filaments with dependence of current density on applied field. IEEE Transactions on Magnetics, 41(10), 3751-3753.
- Satiramatekul, T., Bouillault, F., Devred, A., and Leroy, D. (2007). Magnetization modeling of twisted superconducting filaments. IEEE TAS, 17(2), 3737-3740.
- Dular, J., Henrotte, F., Nicolet, A., Wozniak, M., Vanderheyden, B., and Geuzaine, C. (2023). Helicoidal transformation method for finite element models of twisted superconductors. Submitted to IEEE TAS.

GetDP and FiQuS (Finite Element Quench Simulator)

- Dular, P., Geuzaine, C., Henrotte, F., and Legros, W. (1998). A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Transactions on Magnetics, 34(5), 3395-3398.
- Vitrano, A., Wozniak, M., Schnaubelt, E., Mulder, T., Ravaioli, E., and Verweij, A. (2023). An open-source finite element quench simulation tool for superconducting magnets. IEEE TAS, 33(5), 1-6.

CATI method - Main contribution

Dular, J., Magnus, F., Schnaubelt, E., Verweij, A., and Wozniak, M. (2024). Coupled axial and transverse currents method for periodic superconductors finite element modelling. Submitted to SUST.

https://arxiv.org/abs/2404.09775

HFM High Field Magnets