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Superconducting magnet electromagnetic modelling

Magnet Cable Strand

SC filament Matrix
[Schreiner, 2002]

[Barzi, 2019]

▶ Quench protection design requires good AC loss models.
▶ Example: CLIQ (coupling-loss induced quench) devices.
▶ Magnet geometry is multi-scale. Small-scale, 3D,

transient, effects contribute significantly to AC losses.
⇒ Need for accurate modelling down to the strand level.
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From strands to magnet

Fully discretized magnet models are very heavy to solve.
⇒ Lightweight, intermediate models are necessary.

Homogenization of small-scale properties:

[Vitrano, 2023]

Homogenized parameters:
▶ magnetization, lumped resistance and inductance.

Back to the small-scales: AC losses in strands (and cables).

⇒ CATI method
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Problem statement - Multifilamentary strand

Multifilamentary strand subject to:
▶ transport current,
▶ transverse magnetic field,

with a range of frequencies and amplitudes.

p/6

happlied

Itransport

SC filaments
Cond. matrix
Twist pitch p

Output: transient AC losses and magnetization.
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Composite strand dynamics

happlied

j

Coupling currents

j

[Morgan, 1970]

Loss contributions:
▶ Coupling currents in the matrix.

▶ Eddy current in the matrix.
▶ Hysteresis in SC filaments.

Magnetization contributions:
▶ Matrix + filaments.

These different contributions interact with each other.
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Equations and FE formulation

Magneto-quasistatic equations and constitutive laws (T is fixed):
div b = 0, (Gauss)

curl h = j, (Ampère)
curl e = −∂tb, (Faraday)

with

{
b = µ0h,

e = ρ(j, b) j,

with the (nonlinear) power law for the resistivity in SC filaments:

ρ(j, b) =
ec

jc(b)

( ∥ j∥
jc(b)

)n−1

.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

||j||/jc

||e
||/

e c

n = 10
n = 20
n = 100

Efficient choice for SC: h-ϕ-formulation

▶ Weak form of Faraday’s law.
▶ Find h ∈ H(Ω) such that, ∀h′ ∈ H0(Ω):(
∂t(µ0h) ,h

′)
Ω
+

(
ρ curl h , curl h′)

Ωc
= 0.

▶ It ensures curl h = 0 in ΩC
c (“cuts”).
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CATI method
▶ 3D model: computationally expensive.
▶ We propose a pair of 2D models.

Inspired from [Satiramatekul, Bouillault, 2005].

p/6

Coupled Axial and Transverse currents (I), or CATI method

ViIi ṼiĨi

Axial Currents (AI) Formulation Transverse Currents (TI) Formulation

2ℓ2ℓ

Circuit Coupling

▶ 2D models written on 2ℓ = 2p/6.
▶ Global quantities: Ii, Vi, Ĩi, Ṽi (currents and voltages).
▶ Coupling via circuit equations.
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Circuit coupling equations

ViIi ṼiĨi

Axial Currents (AI) Formulation Transverse Currents (TI) Formulation

2ℓ2ℓ

Circuit Coupling

3

1

3

2

1

êx

êy

êzℓ

I3

I1

Ĩ2

Ṽ1

Ṽ3

V2

AI AITITI

I3Ṽ3

Exploiting periodicity:

Ĩ2 = I3 − I1,

V2 = Ṽ3 − Ṽ1.
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Length correction factor

Without correction: overestimation of flux and current.
▶ Currents and voltages vary continuously along the wire.
▶ We are assuming constant values over 2ℓ:

2p/6 2p/6

z z
cos(αz) cos(αz)

z̄z̄

▶ We reduce ℓ to ℓ∗ to account for this:

ℓ∗ =
sin(2πℓ/p)

2πℓ/p
ℓ.

▶ For 2ℓ = 2p/6 (common hexagonal pattern), ℓ∗/ℓ = 0.8270.
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Implementation - GetDP and FiQuS

▶ Free and open-source Finite element Quench Simulator.
▶ Coded in Python, uses the FE framework Gmsh & GetDP.
▶ HTS Pancake coils, multipole magnets, CCT magnets. . .

cern.ch/fiqus
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Verification with 3D reference

CATI method vs. 3D reference model:
▶ 54 Nb-Ti filaments, p = 19 mm.
▶ jc,Nb-Ti(b), σCu(b), T = 1.9 K.
▶ Field bmax = 0.5 T, f = 10 Hz.
▶ 3D: 970k DOFs, 150h.

CATI: 30k DOFs, 1h.
▶ Relative difference on AC losses < 5%.
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Loss map with no transport current
The CATI method is fast and accurate ⇒ Parameter sweeps.
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With (in-phase) transport current It = 1 kA:
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Outlooks and extensions

Extension to Rutherford cable geometries

▶ Homogenized strands from detailed CATI results?
▶ Tilted current density vectors?

▶ Nb3Sn strands (diffusion barriers, unreacted materials).
▶ MgB2 strands (ferromagnetic matrix and loss).
▶ Bi-2212 or Bi-2223 wires.

▶ AC losses change due to strand cabling deformation.

[Hopkins, 2024]
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Outlook - Homogenization of full-scale magnets

Strand macroscopic response: magnetization and losses.

⇒ Homogenization of small-scale properties:

[Vitrano, 2023]

with homogenized parameters: magnetization, lumped R and L.
▶ Either identified a priori (simple homogenization),
▶ or resolved on-the-fly (multi-scale resolution).
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Conclusions

Efficient 2D+2D model for AC losses (h-ϕ-formulation)
▶ Magnetodynamics (eddy currents).
▶ Nonlinear material properties.
▶ Fast and accurate.

Implemented in FiQuS, with GetDP/Gmsh
▶ Open-source, modular, and highly flexible.

Outlooks
1. Extend the CATI method to cables.
2. Investigate different LTS/HTS wire and cable geometries.
3. Exploit the results in homogenized models.

Joint work with the STEAM team at CERN!
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