

9th International Workshop on Numerical Modelling of High Temperature Superconductors - HTS 2024

10-13 June 2024, Parkhotel, Bad Zurzach, Switzerland

The role of ferromagnet to prevent the flux-jump occurrence: a numerical study

Michela Fracasso, michela.fracasso@polito.it

Michela Fracasso, Laura Gozzelino	Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino Italy
Mykola Solovyov	Institute of Electrical Engineering, Slovak Academy of Science, 84104 Bratislava, Slovakia

Roadmap and Outline

Low-frequency magnetic fields shielding

manufacturing techniques able to provide suitably shaped objects

modelling procedures able to guide the shielding devices optimization depending on the required working conditions

REQUIRES

MgB₂ fabrication process

MgB₂ bulk was obtained from commercial MgB₂ powders (Alfa Aesar) mixed with hexagonal BN. The powders were loaded into a graphite die system of ~ 20 mm inner diameter and processed by spark plasma sintering (SPS) at 1150 °C for a dwell time of 8 min. The maximum pressure applied on the sample during sintering was 95 MPa.

The as-prepared bulks are machinable:

- an axial hole can be drilled using bits with different radii ٠
 - the final product is refined using a lathe machine •

Ability to shape and size bulks

olitecnico

key aspect for magnetic shielding applications in order to reach high performances of magnetic mitigation in relation to working conditions.

AR= height/average diameter ~ 1

Geometrical parameters: inner radius $R_i=7.0$ mm, external radius $R_0 = 10.15$ mm, external height $h_e=22.5$ mm, internal depth d_i =18.3 mm. $AR = h/R_{o} = 2.25$ $AR' = d/R_o = 1.83$

Umprove machinability of the bulks

Or Thermal properties get worse

BN addition [wt.%]: 10 Final sample density: $\sim 2.50 \text{ g/cm}^3$

L. Gozzelino et al., Supercond. Sci. Technol., 33, 044018 (2020) G. Aldica, et al., Patent No RO130252-A2, DPAN 2015-383635

M. Fracasso

MgB₂ cup: shielding in axial-field orientation

Modelling: A-V formulation

Finite element method (FEM) solving A-V Formulation by COMSOL Multiphysics® 6.0 (2D axisymmetric geometry)

$\nabla \cdot (k(T)\nabla T) - C(T) \cdot \rho_m \cdot \frac{\partial T}{\partial t} + Q = 0 \longrightarrow$ Heat source $Q = E_{\varphi} \cdot J_{\varphi}$

 $\rho_m = 2.50 \text{ g/cm}^3$

k(T) and C(T) take the piecewise cubic interpolations of the experimental data of the sample HIP#38 reported in J. Zou et al.

(!) the addition of BN worsens the thermal properties of the materials so k'(T) = k(T)/5 is assumed

HTS M

WORKGROUP

9

- Electromagnetic boundary conditions
 - $Γ₁: at large distance from the shield, the field was assumed equal to <math>μ_0 H_{app}$ and increasing with a ramp rate of 0.035 T/s

Thermal boundary conditions

 $\Gamma_{2,}\Gamma_{3,}\Gamma_{4}$: the sample was covered by an indium layer and cooled throught the thermal contact with the cold head described by

 $\boldsymbol{n} \cdot (k(T) \nabla T) = \boldsymbol{\Upsilon} \cdot (T_{OP} - T)$

where $\Upsilon=3000$ W/(m²K) was determined through iterative adjustments

10

 $\boldsymbol{\Gamma}_{5,}\boldsymbol{\Gamma}_{6}: \quad \boldsymbol{n}\cdot(\boldsymbol{k}(T)\boldsymbol{\nabla} T)=0$

M. Fracasso et al., Supercond. Sci. Technol. 36 (2023) 044001

Т_{ор}=30 К

Strategies to mitigate the thermo-magnetic instability occurrence

(1) Improving the thermal conductivity k(T) of the MgB₂ sample

2 Improving the thermal exchange between the SC sample and the cooling system

- changes of the distribution of the magnetic flux line
- acts as an additional thermal shield

4 Superimposing of a ferromagnetic cup and improving the thermal exchange between the SC sample and the cooling system

14

How to mitigate the flux jump occurrence? (3)Sup

3 Superimposing of a ferromagnetic cup

How to mitigate the flux jump occurrence? **3**Superimposing of a ferromagnetic cup

Ζ $\Omega_{ ext{Vacuum}}$ Γ_4 Γ_5 Γ_8 Γ_6 Γ_2 Γ_{10}

Coupling between Ω_{SC} , Ω_{FM} and Ω_{V} :

 $\Gamma_2, \Gamma_3, \Gamma_4$: SC cooled through the thermal contact with FM shield (via indium layer)

 $\vec{\boldsymbol{n}} \cdot (k'(T) \nabla T) = \Upsilon' \cdot (T_{FM} - T_{SC})$

 Γ_{10} : **FM** cooled through the thermal contact with the cryocooler refrigeration stage (via indium layer)

$$\vec{\boldsymbol{n}} \cdot (k_{FM}(T) \nabla T) = \boldsymbol{\Upsilon} \cdot (T_{OP} - T_{FM})$$

 $\Gamma_{5,}\Gamma_{6,}\Gamma_{7},\Gamma_{8,}\Gamma_{9}: \quad \vec{n}\cdot(k'(T)\nabla T)=0$

 $\vec{\boldsymbol{n}} \cdot (k_{FM}(T) \nabla T) = 0$

21

WORKGROUP

M. Fracasso

How to mitigate the flux jump occurrence? (3)Superimposing of a ferromagnetic cup

ODELLING

MIS MODE WORKGROUP

23

Politecnico di Torino How to mitigate the flux jump occurrence?

Ζ

 $\Omega_{ ext{Vacuum}}$

 Γ_5

 Γ_6

 Γ_2

 Γ_{10}

Politecnico

 Γ_4

 Γ_3

 Γ_8

24

Filling the gap between the SC and FM cups with an indium layer

Coupling between Ω_{SC} , Ω_{FM} and Ω_{V} :

 $\Gamma_2, \Gamma_3, \Gamma_4, \Gamma_7$: SC cooled through the thermal contact with FM shield $\vec{n} \cdot (k'(T)\nabla T) = \Upsilon' \cdot (T_{FM} - T_{SC})$

 Γ_{10} : **FM** cooled through the thermal contact with the cryocooler refrigeration stage (via indium layer)

 $\vec{\boldsymbol{n}} \cdot (k_{FM}(T) \nabla T) = \boldsymbol{\Upsilon} \cdot (T_{OP} - T_{FM})$

 $\Gamma_{5,}\Gamma_{6,}\Gamma_{8,}\Gamma_{9}: \quad \vec{n} \cdot (k'(T)\nabla T) = 0 \qquad \qquad T_{OP} = 30 \text{ K}$

 $\vec{\boldsymbol{n}} \cdot (k_{FM}(T) \nabla T) = 0$

How to mitigate the flux jump occurrence?

4 Superimposing of a ferromagnetic cup cup and improving the thermal exchange

How to mitigate the flux jump occurrence?

4 Superimposing of a ferromagnetic cup cup and improving the thermal exchange

Politecnico di Torino

INFŃ

How to mitigate the flux jump occurrence? **Comparisono of the most efficient strategies**

di Torino

29

Summary and conclusions

• Fully machinable MgB₂ bulks were fabricated via SPS (MgB₂ powders + h-BN powders) $T_{c,onset} = 38.9 \text{ K}, J_c > 4.0 \times 10^8 \text{ A/m}^2$ ($T = 20 \text{ K}, \mu_0 H_{appl} = 2.0 \text{ T}$), uniform on cm scale

• ! A weakness was found \rightarrow ! occurrence of thermomagnetic instabilities

 $\rightarrow \text{ Numerical analysis to } \rightarrow \text{ predict the flux jump occurrence and test solutions to}$ mitigate the phenomenon

No flux jump occurrence is expected:

- → Improving the thermal exchange across the inner lateral wall of the SC shield
- \rightarrow Superimposing a ferromagnetic shield

(also widening the applied field range where elevated SFs can also be achieved)

M. Fracasso

30

Acknowledgements

Roberto Gerbaldo, Gianluca Ghigo, Francesco Laviano, Simone Sparacio, Daniele Torsello, Laura Gozzelino

Mykola Solovyov, Fedor Gömöry

Hi-SCALE COST Action

Mihai A. Grigoroscuta, Mihail Burdusel, Gheorghe V. Aldica, Petre Badica

Thank you for your kind attention!

