

9th International Workshop on Numerical Modelling of High Temperature Superconductors - HTS 2024

User-defined Superconductivity Formulations in COMSOL -Tipps for Efficient and Reusable Implementations

Sven Friedel

Alexandre Arsenault

COMSOL Fully Integrated Software Suite

- Multiphysics simulation, from building geometry to results analysis, via a streamlined physics-based modeling workflow
- Application Builder
- Model Manager

Typical COMSOL Usage in the HTS Community

Select Physics AC/DC AC/DC Agnetic Fields, No Currents Magnetic Fields, No Currents, Boundary Elements (mfnc) Magnetic Fields, No Currents, Boundary Elements (mfncbe) Agnetic Fields (mf) Fields (mf) Fields (mf) Kagnetic Fields (mf)

Built-in Physics Interfaces

- H-formulation (*mfh*)
- A-formulation (*mf*)
- φ –formulation (*mfnc*)
- Several more...

$$J_{c} = \sigma \mathbf{E}$$

$$\mathbf{E} = \rho (\nabla \times \mathbf{H} - \mathbf{J}_{e})$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{H} = -\nabla V_{m}$$

$$\nabla \cdot \mathbf{B} = 0$$

- Use two or more of built-in interfaces and couple in boundaries to obtain H-φ, A-φ, T-A, etc.
- "straightforward"

$$e_{a}\frac{\partial^{2}\mathbf{u}}{\partial t^{2}} + d_{a}\frac{\partial\mathbf{u}}{\partial t} + \nabla\cdot\Gamma = f$$
$$0 = \int_{\Omega} \text{weak } \partial S$$

Equation-based Interfaces

- Coefficient-form
- General form
- Weak form
- "innovative but nerdy"

My Topic Today: Further Power Tools Uncovered

Select Physics

✓ ▲ AC/DC

Built-in Interfaces

> 🚴 Electric Fields and Currents

🗸 💁 Magnetic Fields, No Currents

- 🚸 Magnetic Fields, No Currents (mfnc)
- Magnetic Fields, No Currents, Boundary Elements (mfncbe)
- ✓ ₹ Electromagnetic Fields
 - 👧 Magnetic Fields (mf)
 - F Vector Formulations
 - X Magnetic and Electric Fields (mef)
 - .0 Magnetic Field Formulation (mfh)
 - Magnetic Fields, Currents Only (mfco)
- > 🔩 Electromagnetic Heating
- ✓ 4 Electromagnetics and Mechanics
 - Rotating Machinery, Magnetic (rmm)
 - > 🔇 Rotating Machinery, Magnetic–Structure Interaction
 - > 📐 Electromechanics
 - > 놀 Piezoelectricity
 - ≚ Electrostriction
 - ≚ Ferroelectroelasticity
 - > 🔒 Magnetostriction
 - > 🖺 Magnetomechanics
 - > 🐙 Piezoresistivity
- > 🖺 Electromagnetics and Fluids

Advantages

- Well-established and maintained technology
- Constantly extended by new features
- Easy coupling with any other existing technology

Recent News

- (mfco) Biot-Savart formulation
- (mfncbe) Boundary Elements formulation
- Time-periodic FEM solver
- Etc...

Manual Coupling

- Activate 2 or more physics
- Define domains of validity
- Couple at interfaces
- Enjoy many built-in features, e.g. discontinuities, constitutive relations, solver defaults

Manual Coupling Results

- Proven success in many publications
- Research topics are:
 - Order of shape function
 - Accuracy vs. speed
 - Domain- or boundary coupling

Why would one use anything else? 🎱

Select Physics

Equation-Based Interfaces

Pros

- Full control for testing
- Textbook notation

Cons

- No default units
- Simple solver defaults
- No constitutive relations
- Basic boundary conditions
- Reuse is "nerdy"

Equation-Based Modeling

- Used in many publications
- Access to weak form
- 3D, 2D, 1D entities

Settings - ₽ Settings - 1 General Form PDE Weak Form PDE E E Label: General Form PDE 1 Label: Weak Form PDE 1 Domain Selection Domain Selection Override and Contribution All domains Selection: Equation Show equation assuming: ĥ Study 1, Time Dependent ÷ • $e_{a}\frac{\partial^{2}\mathbf{u}}{\partial t^{2}} + d_{a}\frac{\partial\mathbf{u}}{\partial t} + \nabla\cdot\Gamma = f$ $\mathbf{u} = [u1, u2]^T$ Override and Contribution $\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right]$ Equation Conservative Flux Show equation assuming: • -u1x х 1/m у $0 = \int_{\Omega} \text{weak } \partial S$ -u1y Г х -u2x 1/m Weak Expressions у -u2y weak -test(ux)*ux-test(uy)*uy+1[m^-2]*test(u) Source Term 1/m² 1 1/m² Damping or Mass Coefficient • s/m² 0 s/m² da s/m² 1 s/m² n Mass Coefficient s²/m² 0 s²/m² 0 ea s²/m² 0 s²/m² 0

Example: Magnetodynamic H- ϕ **Formulation [1]**

Second, we implemented the H– ϕ formulation with Faraday's law in nonconducting domains, such that the equations are given by [5]

In
$$\Omega_c^C$$
: $\frac{\partial\mu\nabla\phi}{\partial t} = 0$
In Ω_c : $\nabla \times (\rho\nabla \times \mathbf{H}) = -\frac{\partial\mu\mathbf{H}}{\partial t}$. (5)

We refer to this case as the magnetodynamic H– ϕ formulation (H– ϕ /D).

The weak equations for this formulation are given by

$$\frac{\partial}{\partial t}\mu \int_{\Omega_c^C} \nabla \phi \cdot \nabla \tilde{\phi} \, \mathrm{d}\Omega - \int_{\Gamma} \hat{\mathbf{n}} \times \mathbf{E} \cdot \nabla \tilde{\phi} \, \mathrm{d}\Gamma = 0 \qquad (6)$$
$$\int_{\Omega_c} \rho \nabla \times \mathbf{H} \cdot \nabla \times \tilde{\mathbf{H}} \, \mathrm{d}\Omega + \frac{\partial}{\partial t}\mu \int_{\Omega_c} \mathbf{H} \cdot \tilde{\mathbf{H}} \, \mathrm{d}\Omega$$
$$- \int_{\Gamma} \underbrace{\hat{\mathbf{n}} \times \mathbf{E}}_{\mathbf{E}_{\mathbf{t}}} \cdot \tilde{\mathbf{H}} \, \mathrm{d}\Gamma = 0. \qquad (7)$$

[1] A. Arsenault, B. de Sousa Alves, G. Giard, and F. Sirois, «Magnetodynamic H- φ Formulation for Improving the Convergence and Speed of Numerical Simulations of Superconducting Materials", IEEE Trans. Appl. Supercond., Vol. 33, No. 7, 2023. <u>https://doi.org/10.1109/TASC.2023.3293449</u>

Modify Built-in Equations

- Use φ –formulation (*mfnc*) instead of weak form
- Change weak term only
- Enjoy all the goodies of built-in formulation

Modify Built-in Equations

- Compare compute time
 - PDE Version: 36 s
 - Modified mfnc: 56 s (+55%)
- The PDE version uses less robust solver defaults; need to change those, too.

Solver Level	Setting	PDE	mfnc	runtime [s]
Direct solver	Check error estimate	No	Auto	56
Advanced	Reuse sparsity pattern	off	on	61
Fully Coupled	Jacobian Update	minimal	once per time-step	53
Fully Coupled	Max. No of iterations	4	15	38
Fully Coupled	Tolerance factor	1	0.2	38
Time stepping	Steps taken by solver	free	strict	36
Time stepping	Error estimation	Include algebraic	Exclude algebraic	36
Direct solver	Change from MUMPS to	PARDISO	PARDISO	20

Do I really need to change 10 settings manually, again? ⁽²⁾

Method Call

ICOMSOL

- Embed method calls into the Model Builder tree.
- Methods can be refined to detect existing feature nodes.

	$\leftarrow \rightarrow \uparrow \downarrow \ \ \ \ \ \ \ \ \ \ \ \ \ $	₹ -					
	Type filter text						
	 mfh_mfnc_method.mph (root) Global Definitions Pi Parameters 1 Pi Parameters 2 Pi Parameters 2 						
	Pi Parameters 4	Confirm					
	Pi Parameters 5 Oefault Model Inputs Materials Set Magnetostatic Phi Set Magnetodynamic Phi	?	Modify (mfnc) to Magnetodynam low-level solver defaults?	ic Phi Formulation a	ind activate		
to	 Component 1 (comp1) Definitions M Geometry 1 			Yes	No		
d to	 Haterials Magnetic Field Formulation It Weak Form PDE (w) 	 Image: Base of the second secon					
	 Magnetic Fields, No Curren Multiphysics Mesh 1 	ts (mfnc)					
	 Study 1 mfh + weak Study 2 mfh + mfnc Results 						

Model Builder

Can I reuse methods in other files? 🧐

Add Ins

- Make methods and forms reusable in other models.
- Load Add-in from library.
- Make sure that the Add-in is robust!

But what if I want to do a 3D model? Rewrite the Add-In? ⁽²⁾

Physics Builder

 Build your own physics interfaces, and use them just like standard COMSOL physics.

🏴 | 🗅 📂 🔙 😣 ト ち・さ・ 咱 伯 田 🗴 🔣 風・| Home Definitions Geometry Materials Physics Mesh Study Results Developer New Model \otimes I have never seen Model Wizard that button! 🧐 \Leftrightarrow Preferences Blank Model 101 III. **Physics Builder** > Application Builder Physics Enable Physics Builder Client-Server > Computing Enable it! 😎 \$2 Email > Files Physics Builder > Geometry > Graphics > Help > Libraries > LiveLink Connections Mesh > Model Builder Model Manager Physics Builder Editor Comments and Documentation Physics Builder Manager

Physics Builder

Physics appear in the regular Select Physics dialog

✓ ↓ Recently Used Jdv Weak Form PDE (w) △u General Form PDE (g) ✓ 🔰 AC/DC > 🚴 Electric Fields and Currents HTS Workgroup Formulations Magnetodynamic Phi Formulation (mfnct) > 垫 Magnetic Fields, No Currents > 🕺 Electromagnetic Fields > 🔩 Electromagnetic Heating > 4 Electromagnetics and Mechanics > 🖺 Electromagnetics and Fluids > 🕺 Particle Tracing Electrical Circuit (cir) >)))) Acoustics > 👯 Chemical Species Transport > 🔰 Electrochemistry > N Fluid Flow > (((Heat Transfer > III Optics > 🙆 Plasma > 📇 Radio Frequency

Home Physics Interface

Select Physics

> 🚔 Semiconductor

- Definition of weak form in textbook notation.
- Works in all permitted space dimensions, including extra dimensions.
- Default domain and boundary conditions.
- Default solver settings.
- Default Plot groups.
- Version history.
- Compilation.

ru Hans Dhusias Istanface Magnetic Flux Concentrice Duran	i.			
Physics Builder ← → ↑ ↓ ▼ ↓ ▼ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Settings Weak Form Integrand Expression:	► Equation d timeDerivative(-mur·mu0_const·⊽phi)·test(-⊽phi)	 Physics Builder Manager Physics Builder Manager Version Control Archive Browser Filter: Filter: MagnetoDynamicPhi.r Archives 	
 Developer Comments Dependent Variable Declaration 1 (magneticscalarpotentia Magnetic Flux Conservation, Dynamic (MagneticFluxConse Developer Comments User Input 1 (par.mur) Weak Form Equation 1 (weak1) I Variable Declaration 1 (H) I Variable Declaration 2 (B) Lugation Display 1 (eqd1) 	 Selection Selection: Output entities Preference Use volume Assume control 	From parent		
 Magnetic Scalar Potential (MagneticScalarPotential) Magnetic Insulation (MagneticInsulation) Result Defaults 1 (pdef1) MSP (pg2) Equation Display 1 (eqd1) Study/Solver Defaults 1 (ssug1) Comments 2 Merrison Migration 	Advanced		Version History	
			Þ	Compilation

Take Home Messages

Modify Built-in Eqns

Less need to reinvent the wheel, concentrate on your innovation.

Record Methods

Design reusable model methods to avoid repetitive settings work in one model.

Add-ins

Publish methods and user interfaces to be reused in *several models*.

3

Physics Builder

Design your own tailormade physics interfaces that everybody can use and plug them into COMSOL.

Enjoy the next level of Multiphysics Modeling using *user-defined* formulations.

Resources

- <u>11 h course: Modeling with Partial Differential Equations in COMSOL Multiphysics</u>®
- Model Methods
- Add Ins
- Physics Builder

Who has the first question or comment?

