

历安竟子科技大学 **XIDIAN UNIVERSITY**

Single Event Effect in SiGe Heterojuction Bipolar Tramsistor

Zhang Jinxin

Xidian University

School of Aerospace Science and Technology

jxzhang@xidian.edu.cm

Single Event Effect in SiGe HBT

<u>Outline</u>

- Part 1 Motivation
- Part 2 SiGe HBT and its application area
- Part 3 Radiation effects in modern semiconductors
- Part 4 SEE in SiGe HBT

O A Small Story

CIXIN LIU Translated by KEN LIU THE THREEBODY PROBLEM

NEW YORK TIMES BESTSELLING AUTHOR

WINNER OF THE HUGO AWARD

Техtraordinary."

PAYLOAD — Elements of the spacecraft specifically dedicated to producing mission data and then relaying that data back to Earth.

Information \longrightarrow Frequency

The higher frequency, The more information

The higher power, The farther transmission

Fransmission — Power

MMMMWW

More equipment & More function under weight restriction

Payload get more possibility in Modern Integrated Circuits (IC)

New plot and data collected for 2010-2021 by K. Rupp

Compound semiconductors are the solution

Weight introduced by "warm box" is one of the key factor for payload in space

400km space station -157°C ~121°C

Moon -183℃ ~ 106℃

Mars -153°C ~ 20°C

Jupiter -110°C

renote material mater

Spacecraft for deep space exploration need a huge "warm box"

RADEM of JUICE work at -30°C

2 SiGe HBT and its application area

SiGe HBT is the only device that can work well at 300mK, and it also can operate over a wide temperature range

2 SiGe HBT and its application area

SiGe HBT well integrated with conventional high-performance Si CMOS realizing a BiCMOS technology

- IC based on Silicon: cost-effectively realize system-on-a-chip (SoC) and system-in-a-package (SiP) solutions
- **BiCMOS application:** analog blocks, digital blocks, and AD Conversion
- Higher electronic performance: RF communications

Application Area

- Wireless Communications
- Radio Access Networks
- Radar, Radar Imaging
- Navigation
- Actuation and control
- Sensors/ Sensors Interface

45% failure of spacecraft on-orbit is caused by radiation effects

SiGe HBT has an outstanding hardness to both TID and DD **SEE could be a potential threat to space applications in SiGe HBT**

generation SiGe HBT shift-register

SEE in SiGe HBTs > Sample

HBT device KT9041--commercial product

2nd generation SiGe HBTs HBT device -- from laboratory

Local Oxidation of Silicon (LOCOS) thus some different

representation of TID

۲

emitter

Package-SOT343

3rd generation SiGe HBTs

Layout of the wafer

- The feature size about 0.13um ٠
- Shallow trench isolation (STI) ullet

Deep trench isolation (DTI)

4 SEE in SiGe HBTs

> Experiment

Proton irradiation in PIF

- Striking angle: 0°, 90°, 180°
- Biases: $(1)V_{be}=0.7V \& V_{bc}=-1.2V, (2)V_{bc}=-5V$
- Energy: 200MeV, 100MeV, 50MeV, 16MeV
- Temperature: room temperature, ≥ LN2

Heavy ions irradiation in CIAE

- wide-beam 3cm × 3cm; micro-beam 2.7µm×4.1µm
- Biases: $(1)V_{bc} = -1V$, $(2)V_{bc} = -2V$, $(3)V_{bc} = -3V$
- Ions: 283MeV I+, 110MeV CI+
- Temperature: room temperature

4 SEE in SiGe HBTs

> Measurement

Results of 0.45µm SiGe HBT

When particles strike the pn junctions of SiGe HBT, carriers will be created along their tracks disturbing the electrostatic potential. Electrons and holes will be collected through both drift and diffusion forming transient currents

Different striking angle

- Device structure and nuclear cross sections favor transient events distributions where both the collector and the base currents are small.
- For larger LET, one observes more roughly linear relation between collector and base current peaks

> Different striking angle

200MeV Vbc=-5V Flux= $3.9E8 \text{ cm}^{-2}\text{s}^{-1}$ Fluence= $5E11 \text{ p/cm}^2$

For proton case, the e-h pairs are created by secondary particles. These are produced in nuclear reactions with lattice atoms in the sensitive area. Direction of secondaries depends on nuclear reaction mechanisms.

Different energy

SEE cross section increases with proton energy reaching saturation around 100MeV.

Results of 0.12µm SiGe HBT

- Smaller σ ; less SEE events
 - Smaller transient currents
- No transients in base

Smaller active area :

> Proton irradiation at cryogenic temperature

- Liquid nitrogen cooling
- Copper cold finger
- Vacuum
- T ~ -150°C

Preliminary conclusions:

- Transient currents similar as for room temperature
- Less events; lower SEE cross section

4 SEE in SiGe HBTs (CIAE)

Results of heavy ions on 0.45µm SiGe HBT

Large direct ionization induced by heavy ions; excess carriers promptly collected at the electrodes

Two kinds of transients:

- Transient peaks of about 1mA. Ions strike the area near collector edge. Collection process diffusion
- Fast rise and slow fall transients. Ions strike near the sensitive region. Collection process drift, later diffusion.

4 SEE in SiGe HBTs

Comparison proton and heavy ions

Table SEE events and cross section in protons and heavy ions irradiation

	PROTONS (200MEV)		Heavy ions (283MeV I+)	
terminal	Events	Cross section	Events	Cross section
		(cm^{-2})		(cm ⁻²)
Collector	89	1.6×10^{-10}	60	6×10 ⁻⁶
Base	88	1.6×10^{-10}	11	1.1×10^{-6}

- 1. Transient currents induced by heavy ions much bigger (some mA) than induced by protons (few hundred μ A).
- 2. Proton cross sections for base and collector transients similar; not the case for heavy ions.
- 3. Proton cross section few orders of magnitude smaller
- 4. Proton induced pulses shorter and with slower risetime

Thank You

Ionizing Radiation Damage: Total Ionizing Dose (TID)

9

time (ns)

10

Ionizing Radiation Damage: Single Event Effects (SEEs)

Data,

Single particle strikes sensitive area of microelectronic device. The excess carriers cause some changes of electrical properties. As the reduced of feature size, there are much more accounted of SEEs.

Ionizing Radiation Damage: Single Event Effects (SEEs)

Single Event Latchup (SEL)

gnd

Poly Gate

득

Cross-sectional of triple-well CMOS technology

parasitic bipolar junction transistors in the CMOS technology

Substrate (p)

PMOS region

Poly Gat

n-well

Single Event Burned (SEB) on SiC

10-2

Vdd

Multiple Cell Upset (MCU)

Fig. 2. The SEB events of SiC diode and MOSFET.

160

non-Ionizing Radiation Damage: Displacement Damage (DD)

The collision between an incoming particle and a lattice atom subsequently displaces the atom from its original lattice position.

These vacancy become recombination centers, leading to charge loss in the devices, and damaging the electrical characteristics

pixel [212,279], initiating event 1.165 nA/cm² at 11.78 mins

DD degrades the charge transfer efficiency in a CCD, resulting in a loss of signal charge, it induces defects in silicon which degrade key photodiode parameters such as Quantum Efficiency, charge to voltage conversion gain (CVF), FWC, and increases the dark current