

Wir schaffen Wissen - heute für morgen

Phase-I ARAMIS instruments: Experimental Station A

Rafael Abela

Goals Agenda

Workshop format and goal:

A "hands-on" working meeting to formulate concrete plans for the ESA station and to define the next steps in its realization.

Tentative agenda:

09:30 - 10:00 10:00 - 10:45 10:45 - 11:30 11:30 - 12:15	Applications and plans for ESA (R. Abela) Experiments from FEMTO to SwissFEL (Ch. Milne) The FXE Station at European XFEL (Ch. Bressler) Single Shot XAS/XES (J. Szlachetko)
12:15 - 13:30	Lunch in the Oase Restaurant (PSI)
13:30 - 14:15 14:30 - 16:00 16:30 - 17:00	Detector Development (B. Schmitt) Open discussion of additional user requirements Summary, definition of next steps

Chronology

- SwissFEL Science Case (Sept. 2009)
- High-priority experiments (2010)

Biochemical structure and dynamics

Photochemistry in solution

Surface catalysis and artificial photosynthesis

Dynamics in nuclear materials

Switching in electronic materials

X-ray non-linear optics

- ARAMIS instrument workshops (12.9, 21.11.2011)
 in Bern, 40 + 80 participants
- ES-A,B,C instrument workshops at PSI: 13.3, 27.3, 24.4, 22.5.2012
- Data Acq. / Scientific Computing at PSI: 19.6.2012
- Beamline and instrument scientists hired: 2012-2013
- ≥2 instruments ready for beam: mid 2016

Endstations new

2016

ES-A

Multi-purpose Pump-Probe 2016

ES-B

Pump-Probe Crystallography

2017

ES-C

Coherent diffraction imaging

201X

ES-O

"Others"

Endstations new

Optical Scheme for ARAMIS

Offset Mirrors / Optical Hutch

ES-A: Multi-purpose pump-probe

Ultrafast chemical reactions (time-resolved spectroscopies)

Photosynthesis

Catalysis

. . . .

Time-resolved scattering on molecules in solution

Serial crystallography
Microcrystals in jet

X-ray Absortion Spectroscopy
X-Ray Emission Spectroscopy
Inelastic X-Ray Scattering
Small Angle Scattering/Diffuse Scattering
Time-resolved Protein Crystallography

ES-A: Parameters

Energy range: 2. - 12.8 keV (defined by the optics)

Source size. 26 microns

Source divergence: 2.0 microrads

Pulse duration 5-20 fsec

Bandwidth 0.05%

3 % (special chirped mode)

Number of photons 0.7×10^{11}

Beam size at sample: 150 - 200 microns unfocussed

1 micron (0.1 ?) focussed

ES-A: Draft Layout

ES-A: Draft layout

e.g., 'CAMP' chamber at LCLS

Strüder, NIM A (2010)

ES-A: Technical challenges

X_ Ray diagnostics

intensity	±10-3	to be measured at the experiment
pump-probe timing	±10 fs	close to experiment
Time structure		shot-to-shot
position	±5 μm	unfocussed beam
spectrum	±1 eV	shot-to-shot

ES-A: Technical challenges

Monochromaticity

X-Ray Diffraction: 10⁻³ for diffuse scattering

3 x 10⁻² for Crystallography

XAS/XES 10⁻³ in most of the cases

shot-to shot spectrum measured at the end (?)

10⁻⁴ for RIXS

XANES 10⁻² suitable. Dispersive set up?

ES-A: Technical challenges

liquid jet

```
thin (2 µm), continuous stream detect (synchronize?) sub-µm crystals in beam time-vernier mode +
```

2D-detectors

```
minimize central hole long-λ limit?
```

```
single-shot XAS and XES spectrometers (±1 eV) +
pump laser +
```

wide range of wavelengths, variable attenuator, delay synchronization (±100 fs?)

sample movement, 77K goniometer

single-shot XAS / XES spectrometers

X-ray absorption spectroscopy (XAS)

X-ray emission spectroscopy (XES)

A single-shot spectrometer setup

C. David et al., Laboratory for Micro- and Nanotechnology

- Monitoring of the shot-to-shot spectra:
 as reference for users and as feed-back for machine (e.g. for seeding)
- Non-invasive: does not affect user experiments down-stream (diffracts less than 1%)
- Could also be used for ultra-fast x-ray absorption spectroscopy

Shot-to-shot spectral analysis of LCLS

at LCLS-XPP station, diamond spectrometer grating with p=150 nm, 3rd diffraction order, 2.5 m grating-to-detector distance, Gotthard detector

- Spectral resolution of 1 − 2 eV (close to diffraction limit)
- Typical spectral pulse width: 0.2% (as predicted)
- Typical shot-to-shot jitter:0.5% (as predicted)
- Simple, robust, radiation-hard,...

time-vernier mode

increase hit probability at 100 Hz:

laser measurement of particle emission time (and velocity?) use UV fluorescence or visible light scattering predict arrival time at XFEL beam (100 µs in advance) adjust XFEL pulse arrival time (±5 µs, 7 ns accuracy) for hit

∃ Broadband mode

Over-compressed broadband mode
 single-shot p-p Laue diffraction

use accumulated wake fields (4% FWHM bandwidth)

Reiche (2011)

ES-A: Multi-purpose pump-probe

Chapman, Nature (2011)

pump laser

◆ LCLS – XPP specifications

- XPP Laser System
 - Will utilize and expand upon AMO laser system
 - AMO Laser Requirements
 - > 3 mJ per pulse energy at sample (800 nm)
 - < 50 fs pulse duration
 - 120 Hz
 - < 100 fs phase jitter to LCLS RF
 - Multipass amplifier
 - >20 mJ per pulse energy (800 nm)
 - < 50 fs pulse duration
 - 120 Hz
 - Frequency conversion capability
 - · OPA
 - Harmonic generation

- Temporal pulse shaping capability
- Diagnostics suite
- System designed such that a non-laser trained user can perform an XPP experiment
 - · Sufficient automation to control laser parameters
 - · Sufficient engineering controls to provide safe working environment

Fritz, SLAC (2009)

Thank you for your attention.

