Ultrafast Dynamics of Strongly Correlated Systems at SwissFEL

Steve Johnson, ETHZ

Outline

- Introduction: problems in strongly correlated systems
- Examples
 - CDW melting in TiSe₂
 - Diffuse scattering as a probe of nonequilibrium phonons
 - Lattice, charge & orbital order dynamics in manganites
 - Nonlinear phonon-phonon interactions
- Enabling technologies for ESB

Strongly correlated systems

Mott insulator

[Harrison, Phys. Rev. 118 (1960)]

Increasing e-e correlation

- Strong correlations between electronic states
- Breakdown of independent electron picture

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

High-T_c superconductors

Manganites (CMR, CO/OO)

Multiferroics

Tuesday, March 28, 2012

Tuesday, March 27, 12

Strongly correlated systems

Correlations from strong, competing interactions

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Ultrafast: non-thermodynamic states in correlated systems

- New ways to control the state of correlated systems
 - More efficient?
 - New states?
 - Faster?
- Important test of theoretical models

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Strongly correlated systems

 Ideal experiment: selective, fast pump & selective, fast probe

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Ultrafast: non-thermodynamic states in correlated systems

- New ways to control the state of correlated systems
 - More efficient?
 - New states?
 - Faster?
- Important test of theoretical models
- Requires:
 - Pump, probe faster than coupling time
 - Selectivity in pump and probe

Ultrrafast Dynamics Group

Interband absorption (optical)

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Interband absorption (optical)

X-ray diffraction

Tuesday, March 28, 2012

Tuesday, March 27, 12

Interband absorption (optical)

X-ray diffraction Diffuse scattering

Tuesday, March 28, 2012

TiSe₂: charge density wave

T > 200 K

- 1*T* structure
- P-3m1
- Semimetal

T < 200 K

- CDW commensurate phase
- (2a×2a×2c) Superlattice
- Distorts towards 2*H*-structure
- Semimetal

Time-resolved XRD: Laser-induced transition nonthermal

	E_{con}	Laser-induced	Thermal
140 K	5.7 meV/(u.c.)	7.9 meV/(u.c.)	36.7 meV/(u.c.)
90 K	9.0 meV/(u.c.)	16.7 meV/(u.c.)	60.0 meV/(u.c.)

Contrasts with "conventional" CDW from FS nesting

More "efficient" way to drive transition

Supports excitonic model for mechanism of CDW

80 K (Optics) =>16.5 meV/(u.c.)

[E. Möhr-Vorobeva et al. PRL 107, 036403 (2011)]

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Resonant x-ray diffraction

Interband absorption (optical)

X-ray diffraction

Tuesday, March 28, 2012

Tuesday, March 27, 12

Manganese oxides: R_{1-x}A_xMnO₃

Transition metal oxides with perovskite structure

- R: 3⁺ cation as rare earths (La, Pr,...)
- A: 2⁺ cation as Ca, Na, Sr
- Mn: 3+,4+

Many types of long range order ...

- Structural modulation arising from Jahn-Teller distortion on Mn³⁺ sites
- Charge order: modulation of Mn valence
- Orbital order: modulation of orientation of occupied e_q orbitals in Mn³⁺

Collaboration: PSI RESOX (U. Staub), FEMTO (P. Beaud, G. Ingold), ETHZ

Manganese oxides: R_{1-x}A_xMnO₃

Transition metal oxides with perovskite structure

- R: 3⁺ cation as rare earths (La, Pr,...)
- A: 2⁺ cation as Ca, Na, Sr
- Mn: 3+,4+

Resonant x-ray diffraction

Many types of long range order ...

- Structural modulation arising from Jahn-Teller distortion on Mn³⁺ sites
- Charge order: modulation of Mn valence
- Orbital order: modulation of orientation of occupied e_a orbitals in Mn³⁺

Collaboration: PSI RESOX (U. Staub), FEMTO (P. Beaud, G. Ingold), ETHZ

Tuesday, March 28, 2012 Tuesday, March 27, 12

Manganese oxides: R_{1-x}A_xMnO₃

Transition metal oxides with perovskite structure

- R: 3⁺ cation as rare earths (La, Pr,...)
- A: 2⁺ cation as Ca, Na, Sr
- Mn: 3+,4+

Resonant x-ray diffraction

Non-resonant x-ray

diffraction

Many types of long range order ...

- Structural modulation arising from Jahn-Teller distortion on Mn³⁺ sites
- Charge order: modulation of Mn valence
- Orbital order: modulation of orientation of occupied e_a orbitals in Mn³⁺

Collaboration: PSI RESOX (U. Staub), FEMTO (P. Beaud, G. Ingold), ETHZ

Tuesday, March 28, 2012

La_{0.42}Ca_{0.58}MnO₃

- Doubled unit cell due to Jahn-Teller distortion at Mn³⁺ sites
- (5 -5 2) superlattice reflection, sensitive mostly to atomic motion along *x*-axis: 80% (Mn⁴⁺), 20% (La/Ca)
- Dissappears heating above T_{CO}≈ 240 K or with sufficient laser excitation

Pump: Interband absorption

Tuesday, March 28, 2012

Tuesday, March 27, 12

Pr_{0.5}Ca_{0.5}MnO₃: static resonant XRD

Experiment performed at Material Science beamline at SLS (Phil Wilmott)

sensitive to the charge difference of the Mn ions Mn^{3+} / Mn^{4+}

X-ray absorption (fluorescence)

Reflection sensitive to the orbital order (Mn³⁺) (Jahn-Teller distortion)

Tuesday, March 28, 2012

Tuesday, March 27, 12

Pr_{0.5}Ca_{0.5}MnO₃: static resonant XRD

Experiment performed at Material Science beamline at SLS (Phil Wilmott)

sensitive to the charge difference of the Mn ions Mn^{3+} / Mn^{4+}

X-ray absorption (fluorescence)

Reflection sensitive to the orbital order (Mn³⁺) (Jahn-Teller distortion)

Tuesday, March 28, 2012

Tuesday, March 27, 12

Ultrrafast Dynamics Group

Ultrrafast Dynamics Group

Ultrrafast Dynamics Group

Just the beginning!

- Effect of specific lattice modes on charge, spin & orbitals?
- Spin excitations?
- Plasmon (charge) excitations?

Tuesday, March 28, 2012

Ultrrafast Dynamics Group

Pump characteristics

Direct lattice mode excitations (resonance)

- 2 50 THz (6-150 μm)
- 1-30% bandwidth (depends on mode)
- CEP stable: resolve dynamics within the cycle

Direct spin wave excitations similar

• 2-10 THz

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Impulsive "kicking"

- Wide bandwidth, single cycle pulses
- Driving plasmon resonances, phase modes
 - < 1 THz, single-cycle</p>

Orbital/charge excitations

Visible/UV range, < 10 fs</p>

Sample environment

- Vacuum
- Temperature 5-500 K
- Electrical contacts
- Strong magnetic fields (> 1 T)
- Flexible sample & detector angles
 - Grazing incidence for bulk samples

Probe characteristics

- 4-12 keV
- Polarization control via phase plates
- Need effective time resolution of ~10 fs
 - Time arrival monitor is *essential*
- Monochromatic beam (0.01% BW)
- High stability of beam on sample
 - Presently the limiting factor in real experiments
 - I₀ often does not "see" critical instabilities in spectrum or pointing
 - May be best to control pointing with apertures
- I₀ with precision of better than 0.1% ???
- Variable focus down to < 5 microns in either direction

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acknowledgements

PSI/SLS:

ETHZ:

P. Beaud

E. Möhr-Vorobeva (now Oxford)

A. Caviezel

S. Mariager

- J. Johnson
- G. Ingold

U.Staub S.-W. Huang V. Scagnoli

M. Radovic

LCMO sample: Q. Jia (LANL) T. Huber T. Kubacka A. Ferrer

SWISS NATIONAL SCIENCE FOUNDATION

Diffuse scattering:

D. Reis (Stanford)

M. Trigo (SLAC)

must

LCLS XPP:

D. Fritz H. Lemke D. Zhu M. Chollet

TiSe₂:

J. Demsar (U. Konstanz) H. Schäfer (U. Konstanz) A. Titov (RAS)

PCMO: H. Wadati, M. Nakamura, M. Kawasaki, Y. Tokura (U Tokyo)

Tuesday, March 28, 2012

Ultrrafast Dynamics Group