

FEMTO: Activities & Scientific Team

(I) Femtochemistry: fs & ps Absorption

 \rightarrow time-resolved XAS in solution (Chergui Group, EPFL & PSI / R. Abela)

(II) Condensed Matter: fs & ps Diffraction

```
In house group ^{\star}
```

P. Beaud	Scientist
G. Ingold	Scientist
S.L. Johnson [start August 1, 2011: ETHZ faculty position]	Scientist
A. Oggenfuss	Technician
* [responsible for FEMTO source: design (2001 - 2003) & construction (2003 - 2005) & operation (2006 - 2011) / funds: ETH Council]	
S. Mariager	Postdoctoral Fellow
A. Caviezel	PhD Student
S. Grübel	PhD Student
J.A. Johnson	Postdoctoral Fellow
F. Krasniqi, D. Abramsohn, E. Möhr-Vorobeva	previous members
collaborations: U. Staub (SLS RESOXS team), C. Milne (EPFL), CH. Ouitmann (SYN)	

llaborations: U. Staub (SLS RESOXS team), C. Milne (EPFL), CH. Quitmann (SYN) R. Feidenhans'l (U Copenhagen), Ch. Back (U Regensburg)

Outline:

- Lessons from FEMTO

- Towards SwissFEL (ARAMIS)

FEMTO —

Correlated Structural and Electronic Dynamics in Complex Materials

Goal: Resolve correlated dynamics: lattice, charge, orbital and spin order real time & atomic resolution

- Lattice dynamics: (time domain & atomic resolution): $\tau_{vib} \simeq 100$ fs (vibrational period)
- Electron dynamics: (charge-, orbital-, spin-order): $\tau_{e-ph} \simeq 1$ ps (e-phonon);
 - $au_{e-e} \simeq$ 10 fs (e-e scattering); $au_{e-corr} \simeq$ 0.1 fs (e-correlation)

FEMTO Project: Design 2001 - 2003 / Construction: 2003 - 2005

10 Research focus and highlights – Synchrotron light

PSI Scientific Report 2006

Seeing matter within a picosecond

A tuneable undulator source for femtosecond X-rays in the range 4 – 12 keV is now in operation at the SLS storage ring. The source combines accelerator and laser technology relevant for the next generation light sources. It provides an inherently synchronized femtosecond laser 'pump' and X-ray 'probe' to enable time-resolved absorption and diffraction experiments. Observation of coherent optical phonons in bismuth single crystals via X-ray diffraction demonstrates the excellent spatial and temporal stability of the source that allows direct quantitative measurement of ultrafast lattice dynamics and associated phase transitions.

• fs grazing incidence diffraction & fs scanning absorption spectroscopy

FEMTO 2006-2012: Experiments Successfully Exploited . . .

- SLS storage ring: controlled operation
- diagnostics: pulse averaging
- trans. \oplus long. feedback systems & top-up
- THz slicing diagnostics

- time resolution: 200 fs FWHM

- propagate beams in vacuum

 \rightarrow "diffraction without distruction" $\rightarrow 8 \ x \ 10^{10}$ ph/pulse/0.1% bw & 100 Hz

SwissFEL:

 \rightarrow feedforward systems

 \rightarrow arrival time stamping

 \rightarrow 20 fs FWHM

⇔ profit: high flux & shorter pulses price: instability

FEMT

Ingold / Aramis Workshop / March 27, 2012

Intrinsic Synchronization & Feedback Systems & Top-up Operation

FEMTO Station: Laser System - Exp Chamber - Diagnostics

FEMTO

Laser-pump / X-ray-probe experiments: time resolution 200 fs

Pump-probe setup (2-pulse excitation)

Pixel detector (gateble) (PSI Detector Group)

Lesson: really bad - there is no permanent installation of the FEMTO endstation

Ingold / Aramis Workshop / March 27, 2012

New FEMTO Endstation: Phase I - Status Feb 2012

ML Monochromator

KB Optics

HV Hexapod Cryo Goniometer

Installation at μ XAS beamline: summer 2012

approach:

- 2D pixel detector: out vacuum
 - cryo-cooled sample: in vacuum ($5 \ge 10^{-8}$ mbar & 40 K & 6 days)
 - speckle-free exit window (Kapton, Be)
 - no bake-out: installation of LN₂ cold traps

FEMTO

SWISS LIGHT SOURC

loading chamber

base table

Towards SwissFEL: ARAMIS Endstation-B

(1) long-range order in correlated materials: - structural dynamics: diffraction (tr-XRD) lattice - electronic dynamics: resonant diffraction (tr-RXRD) charge, orbital, spin (2) non-equilibrium phase transtions: - phases can be tuned by varying external parameters: **B**, **E**, **S**/**P**, **T** (and chemical or "photo-doping") (B: magnetic, E: eletric, S/P: strain/pressure, T: temperature) \rightarrow 'B E S/P T' sample environment - coherent scattering (domain dynamics): \rightarrow speckle-free sample environment (trans. & long. coherence) (3) switching in multiferroics: - flexible pump & probe beams: wavelength / intensity / pulse length / polarization pump-beam wavelength: THz / IR / UV / X-ray probe-beam wavelength: tunability / polarization: lin & circ

FEMTC

2012: How would Endstation-B look like today ? . . . probably similar to XPP endstation at LCLS . . .

 (2) X-ray beam arrival measurement: ≤ 20 fs FWHM Installation X-ray BAM in front exp. station: non-destructive, wavelength & intensity independent
⇒ (1) & (2) provide redundancy & cross checking

FEMTO

X-Ray Probe Beam: Flexible Polarization

Installation of diamond phase retarders after the monochromator

crystal phase retarders (CPR) \leftrightarrow circular polarized undulator (CPU) circular polarized flux: fom = $(S_3/S_0)^2 \ge S_0$ [S₃: circular polarized flux density; S₃: unpolarized flux density]

spontaneous radiation: fom(CPR) \simeq fom(CPU) for energies \geq 3 keV \leftrightarrow if valid for fs SASE: no need for polarized afterburner

Ingold / Aramis Workshop / March 27, 2012

Scanning - Resonant & Non-Resonant Diffraction: Example PCMO

SwissFEL ARAMIS: Hard X-Ray TR-(R)XRD Endstation

(I) Speckle-free XPP UHV diffractometer for condensed matter

- \rightarrow flexible pump & probe beams [wavelength (THz, IR, UV, X-ray); polarization; fluence]
- \rightarrow integrated diagnostics [pulse arrival; intensity; polarization]
- \rightarrow flexible sample environment [\vec{B} , \vec{E} , S/\vec{P} , T]

[B = 0 - 10 (12) T (static); E = 0 - 100 kV/cm (static) & 1 MV/cm (THz); S: strain; T = 15 - 700 K]

- (i) in air: **B** = 0 1 T (PM) & **K** T = 100 400 K, $\Delta T = \pm 5 K$ (LN2 cryo-jet)
- (ii) UVH: B = 0 10 (12) T (SC) & T = 15 700 K, $\Delta T = \pm 0.5 K$ (He-flow cryostat)

T = 400 - 2000 K, $\Delta T = \pm 2 K$ (Laser heater)

(II) Large area pixel detector operated in air / He- atmosphere

 \rightarrow detector arm: industrial robot [position accuracy in 1 m³ < pixel size]

(small angle scattering: large sample - detector distance)

(III) Integrated Diagnostics

- → X-ray pulse arrival [high pressure THz streaking]
- \rightarrow polarization: crystal analyzer [polarizer: crystal phase retarders (after Mono)]

(IV) Laser Set-Up at Exp Station

FEMT

 \rightarrow talk by P. Beaud

Ingold / Aramis Workshop / March 27, 2012

SWISS LIGHT SOURC

Static Magnetic Field: "1/2 Split Coil SC Magnet" ~ 6 - 7 Tesla

Oxford Instruments 14T Recondensing UHV XMCD System

System description:

14 T fast-ramping (15 min to field) horizontal field split pair in UHV cryostat, with interchangeable VTI and ³He inserts, and fully automated sample height and rotate movement

Status:

In progress

OI ref. 39175

Conford Instruments 2011

FEMTO

proposal: space constraints \leftrightarrow SC coils mounted above midplane only

Custom Sized SC Magnets & Hexapod Sample Manipulators

[http://www.oxford-instruments.com]

[http://www.symetrie.fr/en/]

- \Rightarrow non-magnetic cryogenic in-vacuum precision manipulators have to be developed insertion into small bore (~40 mm) split pair SC magnet
- \leftrightarrow opposite approach: pulsed magnets ?

demonstrated (BL19LXU/SPring8): 38 T & 30 msec duration, 50 T could be feasible rep-rate & lifetime ?

Outlook: Electronic Excitations - Hard X-Ray tr-RIXS & Self-Seeding

MERIX RIXS spectrometer at APS 30-ID

energy: 4 - 12.4 keV self-seeding: 10⁻⁵ bw sample environments: polarization dependence:

FEMTO

 $\label{eq:K-edges 3d elements & L-edges 5d elements (Ir) \\ \rightarrow \mbox{ energy resolution } \sim 100 \mbox{ meV & flux 10^{12} ph/s & 60 fs} \\ \mbox{ low & high T, magnetic field} \\ \mbox{ scattering in H & V plane} \\ \end{tabular}$