

SwissFEL laser infrastructure and R&D activities

Christoph Hauri

Paul Scherrer Institute/ Ecole Polytechnique Fédérale de Lausanne

- Overview on SwissFEL laser requirements and infrastructure
- the front end laser system
- Laser-based THz source towards high-power single-cycle pulses
- Undulator test program/seeding at the SwissFEL test injector facility

Laser systems at SwissFEL

Requirements user systems at SwissFEL

Requirements

- low timing jitter FEL⇔pump/probe laser
- characterize temporal jitter shot-to-shot
- large wavelength range to be covered (THz...VIS....DUV...soft x-rays)
- multi-cycle and single-cycle pulses, pulse trains
- carrier-envelope phase stabilized pulses
- high stability and flexibility at user station long beam path from laserhutch to EHs (up to 40 m) to diagnostics (>60 m)

- laser hutch on first floor (above EH1)
- Ti:sapphire amplifier as front end
- one laser system for all three hutches
- serves all three HX exp. hutches
 (3 independent beam lines)

Requirements user systems at SwissFEL

user wish list (tentative)

energy stability < 1-2% required for OPAs

timing jitter 100 fs (<10 fs) for EH2 and EH3, (EH1)

wavelength ranges 750-850 nm 20 mJ

200-1000 nm 0...1mJ **SC**, MC

1-20 um 0...500 μJ **SC**, MC

1-15 **THz** 0...20 uJ **HC, SC**, MC, NB

repetition rate 0...100 Hz

field-sensitive experiments yes **CEP stabilization** in EH1

power level 20 mJ 1 line (freq. conversion)

20 mJ 1 line (SC pulse generation)

>>20 mJ 1 line (THz)

HC: half cycle pulses SC: single cycle pulses MC: multi cycle pulses NB: narrow bandwidth

Requirements user systems at SwissFEL

- front end: 1x Ti:Sapphire amplifier with 3 beamlines
- propagation of amplified ps pulses
- compression & frequency conversion in EHs
- one hutch EH1 with highest temporal jitter stability

online information/control at experiment for users

- single shot laser pulse energy
- beam pointing/beam position
- timing jitter
- pump probe delay
- CEP phase
- temporal and spatial profile

workshop on adv. neutron al

Laser systems at SwissFEL

Opt. Express 19, 20128 (2011)

PRL 104, 234802 (2010)

Trisorio et al. APB (2011)

APL 99,161116 (2011)

Opt. Lett, accept. (2012)

- versatile amplifier system
- wavelength tunable across 120 nm
- multi-color amplification
- pulse durations TL 15 fs...100 fs
- tuning extended into UV and deep UV
- high stability (0.4% rms) => OPA

Applications for SwissFEL

- Low-emittance electron gun
- THz generation/THz streak camera
- tunable HHG source/seeding

laser development activities

Terahertz Infrared Visible Ultraviolet

- High power single/few cycle THz source (laser-based)
 - synchronized to Ti:Sapphire laser
 - +/- delay with regards to hard x-ray pulse
 - >1 MV/cm, ≈Tesla
 - THz streak camera, THz applications

 high-power, table-top soft x-ray source (HHG) coherent imaging, seeding FEL

Towards high-power single-cycle THz

Organic crystal

- DAST : 4-N,N-dimethylamino-4'-N'methyl stilbazolium tosylate
- strong optical nonlinearity
- low absorption
- good focusability

sufficient for a prototype THz streak camera

Hauri et al. Appl. Phys. Lett. 99, 161116 (2011)

undulator test/seeding at SwissFEL test injector facility

Why undulator test/seeding at SwissFEL test injector facility?

- validation of critical components for SwissFEL
- train ourselves in undulator alignment, FEL operation, FEL characterization, arrival time measurements, opt. synchronization
- first time a running FEL at PSI

ID group

- validate prototype undulator U15 with "soft beam"
 - PSI has most aggressive design for undulators (Japan: U15-> U18 after testing)
- validate strategy for beam based alignment of undulator
- test alignment strategy with photons (SE, seeded)
- w/o seeding only weak SE

Diagnostics group and laser group

- validate prototype THz streak camera (tested with seeded FEL)
- validate jitter between FEL and probe pulse
- combine THz, HHG and FEL pulse for FEL characterization & experiment
- if time allows, a PE pump-probe experiment,...

Seeding experiment at SwissFEL test injector facility

Status

- a decision has been taken to install U15 in the injector
 - modification of current beam line
 - e- and γ diagnostics required
- prototype U15 arriving Sept/Oct 2012, tests up to Jan 2013 at SLS
- new laser system (for e.g. HHG) arriving in May 2012
- vacuum system for HHG currently under commissioning
- high harmonic generation starting in June 2012
- optical synchronization scheme foreseen for 2013/14
- laser-based THz source developed
 THz streak camera on track, should be ready end 2012
 (test at HHG beamline, then later on at seeded injector)
- Postdoc and PhD student approved from SNF for seeding experiment
- compact machine
 - excellent conditions for HHG seeding

Seeding experiment at SwissFEL test injector facility

many components available, some not yet

- beam optics VUV (multilayer)
- compact VUV spectrometer (bulky one available)
- chicane vacuum chamber (different to laser heater)
- dipoles for chicane
- IR streak camera

Seeding experiment – expected performance

electrons:

250 MeV, 1 ps FWHM correlated energy chirp 1.6%

HHG seed:

 λ_{HHG} =53 nm/23.4 eV (15th HH of Ti:sapphire) 100 nJ, 60 fs (FWHM,TL), Gaussian, BW 1-2%

FEL:

U15 undulator, K=1.2 bandwidth ≈3e-3 seeded: 4 uJ (≈1e12 photons), 60 fs saturation reached in 4m U15 module

For 350 MeV => λ_{FEL} =27 nm/45 eV

Applications

- PE spectroscopy
- RIXS (Cr, V)
- AMO

for a well matched HH seed!

Time line

2014: undulator test program

Collaborations are welcome!

Oct 2014: Move of injector to SwissFEL facility

- beam optics VUV (multilayer mirrors)
- compact VUV spectrometer (bulky one available)
- chicane vacuum chamber (different to laser heater)
- dipoles for chicane (anticipated for SwissFEL)
- IR streak camera
- manpower (postdocs, students, researchers)