X-Ray Optics in Stockholm

Daniel Nilsson, Fredrik Uhlén, Julia Reinspach, Anders Holmberg, and Ulrich Vogt & Hans Hertz

> Applied Physics/KTH Stockholm

Today

Soft x-rays:

Laboratory water-window x-ray microscopy

Berglund et al, J. Microsc. (2000), Johansson et al, RSI (2002) Takman et al, J. Microsc. (2007)

Soft x-ray optics: Zone plates

Sigtuna, Jan. 2012

dr_N=13 nm Ni zone plates

Single-write Ni ZP

Ø=19 μ m dr_N=13 nm; h=35 nm f=100 μ m @ λ =2.48 nm Excellent uniformity Efficiency: 2.7% (15 nm/h=55 nm zp)

Cold development: ZEP in hex acet

Mold stability

Reinspach et al, JVST B (2009)

Multi-material zone plates:

Ni-Ge efficiency enhancement

Recent results: 13 nm Ni-Ge zone plates

13 nm Ni-Ge gratings

w/ 35 nm Ni and 45 nm Ge

13 nm Ni-Ge zone plate

Diam: 19 μ m Focal length: 100 μ m (@2.48 nm) dr_N: 13 nm: Thickness: 35 nm Ni + 45 nm Ge

Reinspach et al, JVST (2011)

15 nm Ni-Ge zone plate efficiency

Cryo micro-tomography w/ lab. water-window XRM

Diatom reconstruction

λ=3.37 nm
Filtered. back. proj.
53 projections
140 nm resol. Bertilsson et al, Opt Expr (2009)

First lab cryo tomo: parasites and human kidney cell

Bertilsson et al, Opt Lett (2011); Hertz et al J. Struct Biol (2012)

Today

Hard X-Ray Diffractive Optics (PI: Ulrich Vogt; Nanolab: Anders Holmberg)

XFEL @ Hamburg

- •New materials for substrate and optic
- •Cooling of high heat load
- •Large diameter (>1 mm)
- •Diffraction-limited (low aberrations)
- •Metrology for efficiency and wave front
- •"Mass production" of single-shot optics?

LCLS

Undulator (UND) **High-brilliance sources** White beam slit (WBS) & Horizontally collimating mirror (HCM) - 25 Diamond window (DW) uble crystal monochromator (DCM) - 27m • MAX IV – NanoMAX BI rtically deflecting mirror (VDM) - 32m mirror (HFM) - 29m ertically focusing mirror (VFM) - 31m Secondary source aperture (SSA) - 60m Optics hutch Aicrofocusing KB-mirrors (uKB) - 100m in main building Microfocus sample position Vanofocusing zoneplate (ZP) - 110m Lab sources nofocus sample position Endstation 1 in satellite building Endstation 2 in satellite building

Hard x-ray zone plates: Materials

Hard X-Ray Metal Zone Plates: Fabrication

Thanks to R Barrett for eff. meas !

Free-electron lasers:

Source properties

	LCLS	European XFEL (SASE1)
Photon energy [Wavelength]	8 keV [0.15 nm]	12.4 keV [0.1 nm]
Pulse energy	2 mJ	2 mJ
Repetition rate	120 Hz	Trains of 2700 pulses in 0.6 ms
Beam size at lens position	750 μm (FWHM)	982 µm (FWHM)
$E/\Delta E$	500	1000 Single-pulse: ~200-300 mJ/cm ²

Biomedical and X-Ray Physics, KTH, Stockholm

Hard x-ray metal zone plates: Thermal-Load Simulations

Nilsson et al, NIM A (2010), Nilsson et al, SPIE (2011)

W on Di zone plates: Thermal-Load Simulations for XFEL

SASE1 @ XFEL:

Temperature in center of zone plate (Full pulse train)

Nilsson et al, NIM A (2010),

Experiments vs Theory: YAG laser heating & first LCLS exp

Single-pulse YAG-XFEL calibration

XFEL: 1mJ/6kV/350 mJ/cm²

Corresponds to 532 nm YAG: 3.5 ns/57 mJ/cm²

Low-rep-rate (20 Hz) YAG- laser operation:

100 mJ/cm² 1.7×10⁶ pulses

180 mJ/cm² 7×10⁴ pulses

360 mJ/cm² 1.2×10^3 pulses

First LCLS exp

6 kV, 120 Hz 1 mJ/500 µm

 350 mJ/cm^2 10⁵ pulses

LCLS exp: Thanks to Ch. David, PSI

100 mJ/cm² YAG ⇔590 mJ/cm² XFEL

Nilsson et al, submitted (2012)

Multi-material zone plates: Tungsten-Diamond (W-Di)

Why W-Di?

 $W \Rightarrow Small dr_n$ High diffr efficiency $Di \Rightarrow$ High thermal conduct Contributes to effic.

Results

10 µm

(b)

2 µm

Effic @ ESRF dr_n=100 nm: 14% $dr_{n} = 50 \text{ nm}: 7\%$

> 100 nm W-Di zp images 100 nm L/S (Au) @ ESRF

Uhlén et al, JVST (2011)

Summary & Future

- Soft X-Ray Diffractive Optics:
 - Improved efficiency with Ni-Ge multimaterial zone plates
 - Approaching 10 nm zone plates
 - Application: Laboratory x-ray microscopy
 - Approaches synchrotron quality
 - Resolution: <25 nm features
 - Contrast: improved via phase optics and system optimisation
 - Cryo 3D imaging
 - Next:
 - Increase efficiency
 - Shorter exp times w/ new laser; improved optics and system design
 - Applications: soils, colloids, cells, carbon content

Hard X-Ray Diffractive Optics:

- W on Di
 - Thermal properties appear OK for both LCLS and XFEL
 - Fabrication approaches 1:10 aspect ratio
 - W-Di increases efficiency
- Next
 - Wavefront control
 - Prove small (<50 nm?) focus at LCLS
 - Increase efficiency.
 - NanoMAX BL @ MAXIV (U. Vogt et al)

Biomedical & X-Ray Physics group

Thanks!

<u>Ultrasonics & µ-fluidics:</u> Bio-analytics and cell biol.

Peripheral vision