

Wir schaffen Wissen – heute für morgen

Priority SwissFEL experiments

Bruce Patterson

SwissFEL specialties

Priority experiments
Biochemical structure and dynamics
Photochemistry in solution
Surface catalysis and artificial photosynthesis
Dynamics in nuclear materials
Switching in electronic materials
X-ray non-linear optics

Phase-I ARAMIS endstations (2016-2017)

ESA: Multi-purpose pump-probe

ESB: Pump-probe crystallography

ESC: Coherent diffraction imaging

Broadband mode

4% FWHM bandwidth, using accumulated wake fields

Two-color pulses

chirped electron pulse, slotted spoiler in bunch compressor

Patterson, SLAC Tech. Rep (2010)

Time vernier serial crystallography

vary XFEL timing $\pm 5 \ \mu s$ to increase hit rate sub- μm crystal detection with

"Second Order Non-linear Imaging of Chiral Crystals" (SONICC)

factor 100 reduced crystal usage

High-field THz pump

generate single-cycle THz pulse with non-linear crystal

synchronized with XFEL gun and pump lasers magnetic switching, initiation of chemical reactions THz-streaking XFEL pulse arrival time diagnostic

⁵⁷Fe Mössbauer resonance

5 neV at 14.4 keV, τ = 141 ns; 300 resonant photons/pulse requires 6 GeV and monochromator

background-free

pump pulse induces magnetic perturbation (quantum beats)

in a waveguide cavity: super-radiant Dicke state

Röhlsberger, Science (2010)

1. Biochemical structure and dynamics

What conformational changes are induced in GPCRs by binding to pharmaceutically important ligands?

PAUL SCHERRER INSTITUT

jet-injection nano-crystallography

ptychographic 2D-crystallography on cryo-stage

Kewish, NJP (2010)

pump-probe Laue crystallography

Schotte, Science (2003)

2. Photochemistry in solution

 To follow in real time the structural changes accompanying a biochemical reaction in solution.

photo-trigger:

caged molecules

instantaneous structure:

cross-correlation scattering

Pedrini, in press (2012)

3. Catalysis and artificial photosynthesis

How do the timescales for charge separation, trapping and transfer influence catalytic efficiency?

characterize short-lived intermediate states (fs – ns)

Rh 111

PAUL SCHERRER INSTITUT

Ichsanow, Chimia (2011)

single-shot *p-p* XANES / XES spectroscopy

4. Dynamics in nuclear materials

Do molecular dynamics calculations correctly describe the development of defect cascades in irradiated steel?

With which phonon velocity does the electric polarization propagate in a switched multiferroic BiFeO₃, and with what delay does the magnetization develop?

Bibes and Barthelemey, Nat Mat (2008)

Is stimulated RIXS efficient enough to allow ps time-resolved studies?

Thank you for your attention.

