Ultrafast time-resolved x-ray absorption spectroscopy: Watching atoms dance

Chris J. Milne^{1,2}, F.A. Lima^{1,2}, H. Rittmann-Frank^{1,2}, M. Reinhard¹, J. Rittmann^{1,2}, T.J. Penfold^{1,3,4}, R. Abela³, F. van Mourik¹, and M. Chergui¹

¹Laboratoire de Spectroscopie Ultrarapide, EPFL, CH-1015 Lausanne
²Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen
³SwissFEL, Paul Scherrer Institut, CH-5232 Villigen
⁴Laboratoire de Chimie et Biochimie Computationelles, EPFL, CH-1015 Lausanne

What are we interested in ?

 Investigating excited state dynamics of species in solution to try to understand how energy moves in these strongly interacting systems
How does the solvent interaction play a role in the relaxation of these systems ?

 How does the excitation perturb the structure and how does this structural change affect the energy transfer and relaxation ?
Can we relate this information to functionality ?

Can we extrapolate from model systems to understand more complicated systems ?

How do these things work ?

What will be our probe ?

Is function structure or dynamics ?

Structure

- X-ray crystallography
- electron microscopy
- atomic force microscopy
- electron diffraction
- X-ray absorption spectroscopy
- NMR

Side view of the light-harvesting complex II in chlorophyll (PDB)

Dynamics

- Laser spectroscopy
- NMR
- time-resolved diffraction
- X-ray absorption spectroscopy

Rotating hydrated myoglobin molecule http://uweb.cas.usf.edu/chemistry/faculty/space/ B. Space & J. Belof (University of South Florida)

X-ray absorption spectroscopy: Retrieving structure

This works in any medium and is element-specific

atomic background absorption contribution

Extended x-ray absorption fine structure (EXAFS)

- X-ray absorption near-edge structure (XANES)

EXAFS: distances to neighbouring atoms

XANES: oxidation state, geometry, coordination environment

X-ray emission: Retrieving electronic information

analyzer

Sample fluorescence

X-ray beam

Detector (

sample

detector

$\lambda = 2d_{hkl}sin\theta_B$

Analyzer

As with optical spectroscopy you will see all the emission lines if you're above the absorption edge

P. Glatzel et al. *Coord. Chem. Rev.* 249, 65 (2005)
G. Vankó et al. *JPCB* 110, 11647 (2006)

C.J. Milne, Stockholm Workshop 2012

X-ray source: The Swiss Light Source at PSI

3rd generation synchrotron light source located one hour from Zurich

The FEMTO slicing

- 140 ± 30 fs x-ray

- timing stability of

<30 fs RMS over days

- 10⁵ photons/second

pulse duration

- 4 to 20 keV

0.015%

@ 1% BW

source at microXAS

- bandwidth 1%, 0.03%,

- Si (111), KTP, Be, InSb mono crystals

- Si (111), Ge(111) & Si(311) mono crystals

Investigating spin-crossover dynamics

Spin-crossover phenomenon: a transition from a lowspin ground state to a high spin excited state

- can be induced by temperature or light
- Fe(II) compounds represent a general class of spin-crossover systems

Applications:

- ultrafast magnetism
- bistable devices
- model biological systems (heme proteins)

[Fe^{II}(bpy)₃]²⁺ requires optical excitation and shows fs to ns relaxation dynamics

Spin-crossover dynamics

Spin crossover dynamics: Ultrafast XAS results

Ch. Bressler et al. *Science* **323**, 498 (2009) C. Consani et al. *Angew. Chem. Int. Ed.* **48**, 7184 (2009)

The molecule arrives in the highspin state directly from the ³MLCT in ~150 fs

Spin-crossover dynamics

Spin crossover dynamics: SwissFEL possibilities

Picosecond EXAFS has resolved the high-spin state structure of a spincrossover molecular system in solution to sub-Å resolution Femtosecond XANES has allowed us to watch the arrival of an excited

molecular system in its high-spin state

With SwissFEL we should be able to resolve the initial MLCT excitation and follow the relaxation into the high-spin state

<u>Requirements:</u> <20 fs time resolution lots of photons 7.126 keV

Solvation dynamics

Solvation dynamics: water structure around iodine

50 ps after multi-photon excitation at 400 nm

Solvation dynamics: femtosecond timescales

Moving into the femtosecond timescale with sliced x-rays

The fs L₁-edge transient XAS signal shows a broadening to higher energy compared to the signal at 50 ps

200-300 fs: breakup of first shell, most waters move away but one water moves closer (40% probability)

3-4 ps: the first shell reforms and the lone water recombines with the bulk

Solvation dynamics: SwissFEL possibilities

With SwissFEL we should be able to resolve the fast solvation dynamics, perhaps even the structural evolution of the water

<u>Requirements:</u> <10 fs time resolution lots of photons 5.185 keV or 535 eV

Water is fast < 50 fs energy redistribution from O-H stretch M. Cowan et al., *Nature*, 434, 199 (2005)

10

Change / mOD

Absorbance

534 3 el

t = 200 fs - 4 ps

(trt

t < 0

Hemoproteins: Investigating biological function

Myoglobin is an oxygen transport protein that has the ability to bind small molecules such as O₂, CO, NO and CN

0.5

Hemoproteins

Small changes in the ligand character have profound spectroscopic effects

We can knock this ligand off with a photon of green or blue light

Hemoproteins: MbNO pump-probe XAS

4 mM MbNO excited at 532 nm and probed at the Fe K-edge

Hemoproteins

(PA)

Hemoproteins: understanding MbNO

With SwissFEL we should be able to resolve the fast geminate recombination and with better S/N resulting in more accurate structures

M.R. Armstrong et al., **Hemoproteins** PNAS, 100, 4990 (2003)

• A domed ligated (6-coordinated) configuration with 30 ps lifetime is unlikely Kruglik et al. PNAS 107, 13678 (2010) •We can't distinguish between MbNO and MbON

☑ Fe move down 0.16 ± 0.03 Å	
☑ Heme domed ~ 0.03 Å	
☑ Fe-NO 2.88 ± 0).09 Å
🗹 Fe-His93 2.23 :	± 0.07 Å

<u>Requirements:</u> <10 fs time resolution lots of photons 7.125 keV

Ultrafast XAS at XFELs: Caveats

XAS requires some tuneability which is difficult for XFELS

- Nonlinear XAS needs to be avoided (you need to do a probe intensity dependence)
- Synchrotrons are by no means obsolete for time-resolved measurements but significant effort is necessary to move beyond expert users

1.2 0.04 20 (a) Normalised Absorption 0.035 1.2 400 PTPOP_TFY_sum 0.03 **Cross Sectior** PtPOP_HERFD_sum 0.8 15 0.025 350 1.0 0.6 0.02 **FDMNES** 0.015 300 0.4 10 <u>×</u> ×10³ Norm. $\Delta \mu(E)$ 0.8 0.01 Norm. µ(E) experiment 0.2 250 0.005 0 0 0.6 -20 200 HERFD (b) Cu p DOS **Normalised DOS** 0.6 0.4 Cu d DOS Static 11.56 11.54 11.58 11.60 11.62 – TR-XAS X-ray energy (keV) 0.4 -40x10⁻³ 0.2 Cu(dmp)₂PF₆ 0.2 35 mM in MeCN 0.0 0 8.98 9.00 9.02 8.96 9.04 10 15 20 25 30 0 5 35 40 Relative Energy (eV) E /keV

Theory now badly lags experiment for both ground-state and excited-state spectra

F.A. Lima, C.J. Milne et al. Rev. Sci. Instr. 82, 063111 (2011)

Acknowledgements

laboratoire de spectroscopie ultrarapide

LSU <u>http://lsu.epfl.ch/</u> Frederico Lima Hannelore Rittman-Frank Marco Reinhard **Tom Penfold** Jochen Rittmann Frank van Mourik Majed Chergui LSU alumni Wojciech Gawelda **Christian Bressler Dimali** Amarasinghe Amal El Nahhas Van-Thai Pham Renske van der Veen Andrea Cannizzo Susanne Karlsson

FEMTO Paul Beaud Gerhard Ingold SwissFEL Rafael Abela

FEM

ETH Zürich Steve Johnson

University of Basel Markus Meuwly

EPFL LCBC Ursula Röthlisberger Ivano Tavernelli

microXAS Daniel Grolimund Camelia Borca

PHOENIX Thomas Huthwelker

SuperXAS Maarten Nachtegaal

Jakub Szlachetko Jacinto De Paiva Sa

Funding: Swiss NSF, SLS, EPFL, NCCR MUST