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▸ beam-related systematic effects have to be considered. 
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Motivation - Introduction
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• precision luminosity measurement requires a                                          
thorough understanding of beam systematics


• currently aiming at ~1% total uncertainty     


• leading to the shift of the absolute integrated                                 
luminosity by ~ -1% [2] (compared to pre-2021)
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• precision luminosity measurement requires a                                          
thorough understanding of beam systematics


• currently aiming at ~1% total uncertainty     


• leading to the shift of the absolute integrated                                 
luminosity by ~ -1% [2] (compared to pre-2021)

• of particular importance: detailed studies for corrections and uncertainties 
related to the Beam-Beam (BB) interaction [3] 


• BB optical distortion corrections completely underestimated in Run 2 


• BB deflection known, measured very well 


• year-long studies to derive new model and strategy for systematic 
uncertainties, resulted in nice publication [3] 
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Beam-beam interaction

ξ = Nr0β*
4πγσ2

4

Beam-beam 
interaction
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• BB force - electromagnetic interaction of the two 
beams while crossing each other at the IP

• BB parameter  describes the linearised force at 
small amplitude particles 

ξ

• COherent Multibunch Beam-beam Interactions 
(COMBI) [4] code used to model self-consistently

• Studied separately in terms of:

• change in orbit from BB deflection, calculated 
from Bassetti-Erskine formula [5]

• optical effect including dynamic-beta   and 
overlap changes (non-gaussianity and non-
factorisation from coupling)
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Multi-collision study for vdM calibration
• focus on the additional collisions at interaction 

points (IPs) other than the scanning IP


• separate corrections for beam-separation 
dependent deflection-induced orbit shift and 
optical distortion (aka dynamic-beta)

• additional collision =                                                                               
additional betatron                                                                        
tune  shift [6] (Qx, Qy)

• phase advance between IPs  causes modulation on 
tune shift  propagates into the calibration constant [7]

(μx, μy)
→

5

whole bunch motion = coherent spectra

CHART 2023

1 IP

2 IPs (scanning 
+ non-scanning)
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modulated 
calibration 

constant 
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 can be used to obtain                                                                                  

the equivalent calibration                                                                                                   
constant  bias

ΔQmIP

σvis

• simple scaling law derived from                                                                                    
strong-strong simulations

• valid for all LHC IPs 

• verified in simulation for vdM                                                                                                     
regime (ξ < 0.01)
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Benchmark experiment 
• Test designed especially to measure the BB effects


• phase advance between IP1 & IP5 optimised so as 
to maximize the effect on luminosity at the observer 
IP at injection energy 

• lattice validated up to 


• suppression of coherent modes

(1 → 3%)
1∘

• multiple instruments were used                                               
to measure the effects on: 


• luminosity from ATLAS and CMS                 
luminometers 


• tune spectra  from ADT, BBQ 

• transverse beam sizes  with synch.                         

light monitors and wire scanners

• orbit at the IPs with BPMs

(Qx, Qy)
σ
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Luminosity observations 

Coherent spectra
Data COMBI simulated 

coherent 
modes 

min.  max. phase = phase optimisation→

separation 
at another 
location

repetitive 
change of 
configuration

observer

 modeσ modeπ
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Beam-beam experiment results
• aimed at validation of the correction strategy used 

in the vdM calibration 

• support for the multi-IP modelling
• scaling law with BB parameter verified
• observations of BB-induced changes during a 

separation scan

• first measurement of the impact of BB effects on 
the luminosity 
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Pile-up (PU) = ~7 x Single 
Bunch Instantaneous 

Luminosity (SBIL)

two independent 
systems with 

different behaviour

increasing BB parameter

perfectly linear 
luminometer = 
flat response 
across SBIL

Independent measurement  further studies needed for precise measurement→

• possible additional systematics from non-
factorisation


• challenging fit quality - better models developed 

• operational limitations - to be improved in the 

future 
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already published [2], CMS results on the way 

• by accounting for the multiple collisions - additional 0.4% correction for typical BB parameter

• Dedicated BB experiment at the LHC allowed to validate some key aspects of the simulation model

• first measurement of the beam-beam-induced biases on luminosity 

• agreement with the simulation to the level of 0.1%

• Beam-beam simulation model improvements allow for dedicated corrections at the physics conditions

• possible to remove the apparent beam-beam induced slope for measuring intrinsic detector 

response non-linearities in an independent way

•  non-linearity is expected to be one of the main problems at HL-LHC 

• The phase advance adjustment can be used to increase the peak luminosity in HL-LHC

• The results apply to any current and future hadron colliders (including FCC-hh)
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Backup - optics measurements for the BB 
experiment

13

BB impact on luminosity as a function of 
the phase advance between the IPs

Phase optimisation validated with optics measurements:

Measured beta-
beating along 
the LHC ring 

from the knob

Measured beta-
beating along 
the LHC ring 

from the knob 
with reference to 

the MADX 
model 

predictions 



Example of applications by LHC experiments
• vdM conditions


• Significant corrections in opposite 
directions result in small total effect
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• Extrapolation to physics conditions 

• Luminosity measurement can be biased by an 

instrumental non-linearity of the detector response 
over a wide pile-up (PU) range


• Mostly relying on cross-detector comparisons, with an 
assumption of an ideal luminometer

• Typical uncertainty ~0.5% for both CMS [8] and 

ATLAS (with O(10%) correction) [1]

• Expected to be one of the dominant issues at HL-LHC

ATLAS summary 
of BB corrections 

to Run-2 vdM 
calibration scans 

at 13 TeV [1]

CMS study on 
impact of the BB  

effects on the 
observed 

luminometer 
linearity  

Run-3 Physics 
conditions 



• at nominal conditions the luminosity 
measurement can be biased with a non-linearity 
of a detector response over a wide pile-up range 


• sources of inefficiencies, e.g.:

• zero-starvation/saturation

• accidentals 

• activation

• electronics inefficiencies


• mostly relying on cross-detector comparisons, 
with an assumption of an ideal luminometer 


• various detectors can suffer from different 
effects  different sign of the slope→

15

Extrapolation to nominal conditions 

• excellent CMS performance - 
multiple systems on the level 
of 0.1%/SBIL 
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Simulation challenges in physics conditions
• not only measurement but also 

simulation challenging 
• changes with respect to the vdM 

regime:

• pile-up x 100

• higher BB parameter x 1.5-2

• non-zero crossing-angle

• trains - long-range interactions

• hour-glass effect

• using 6D BB strong-strong soft 
Gaussian [9]

• developed sliced luminosity 
integrator for full overlap 
description along the bunch 
during collision 

16

small non-constant 
transverse  beam widths 

β* →

multiple long-range interactions around the IP

longitudinal description 
of the kick with the 
crossing-angle

CHART 2023



Dedicated BB corrections for linearity measurement
• COMBI upgrades are useful to produce dedicated 

corrections - minimising the associated extra 
systematic from per bunch differences

• used for a specific measurement - special 
conditions without trains - avoiding the 
systematic from LR BB:

• wide range of per bunch emittance gives wide 
PU/SBIL* range

• equivalent of the calibration constant  
from emittance scans with reference to  
measured in vdM calibration  [10]

σemit.
vis
σvis

17

σvis = 2π
μpk

n1n2
ΣxΣy

emittance scan is a transverse beam separation 
scan in physics conditions, primarily designed to 

measure emittance 

*Pile-up (PU) = ~7 x Single Bunch Instantaneous Luminosity (SBIL) CHART 2023



Backup slides - motion 
4 collisions

3 collisions

1 collision

Head-on collision Vertical scan 

Vertical scan 

• Incoherent tune distributions based on the amplitude 
of single particle in the bunch 

• distinctive separation between the bunch groups 
depending on the number of collisions they undergo  

• maximum tune spread proportional to the number of 
collisions and the beam-beam parameter 

• tune shift gets squeezed along the separation scan 

WHOLE BUNCH MOTION
• spectra based on the bunch centroid position, turn after 

turn in the machine ring (coherent modes damped) 

• spectra have main spread similar to the single particle 
distributions but also second-order contribution from the 
collision partner

SINGLE PARTICLE MOTION
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