

Mattia Schaer on behalf of the FCC-ee Injector Collaboration :: Paul Scherrer Institute

FCC-ee Injector Baseline and P³ Experiment

CHART Workshop, PSI, 11.10.2023

FCC-ee Injector Study

Collaboration between PSI and CERN with external partners:

CNRS-IJCLab (Orsay); INFN-LNF (Frascati); SuperKEKB – as observer, also interested in the P³ experiment; INFN-Ferrara – radiation from crystal

CDR+ and Cost Estimate for FCC-ee Injector

WPO. Coordination (PSI/CERN)
Task 0.1 Coordination
Task 0.2 Overall parameter optimization

Schematic Layout of Proposed Injector Complex

PAUL SCHERRER INSTITUT

FCC-ee Injector Study, Status and Outlook

- Baseline injector layout ready

 → Fulfilling the latest requirements of the collider rings
- Corresponding cost estimate for the hardware ready

- FCC Feasibility Study: mid-term review on 16.10.2023 will provide feedback
 - Confirm/change overall machine parameters (collider)
 - Is SPS still an option as a pre-booster?
- Revise injector layout or write CDR+ based on presented baseline layout

PSI Positron Production (P³) at SwissFEL (PSI)

		WPC Task 0.2	D. Coordination (PSI/CERN) Task 0.1 Coordination Overall parameter optimization			
WP1. e+/e- 6 GeV Injector Linacs CERN	WP2. Electron and positron Linac extension study (PSI)		WP3. Positron source: target and capture system (IJCLab)	WP4. Damping ring and transfer lines (INFN/LNF)	CDR+ and	
WP5 CDR+, all partners					🔹 cost estimate	
		WP6. Proof c capture in Sv (PSI)	of Principle positron source and vissFEL	✤ P ³ experiment		

The P³ Experiment in a Nutshell

Novel Components under Development at PSI

HTS solenoid ReBCO, 15 K, 2 kA, 12.7 T on-axis

Diagnostic chamber

Faraday Cups

Target device $\Delta z = +/-50 \text{ mm}$

RF S-band SW cavities 40 mm aperture (d) central double feeder 18 MV/m, 14 MΩ/m

Concept designReady for OrderEngineering in progressDelivered

Dhysics Studios	Parameter Optimization	Complete		
	Conical Targets Study	In progress		
	HTS Solenoids	Design complete, components ordered		
Capture Section	2 RF Cavities	Ordered, cups partially delivered		
	16 NC Solenoids	Design complete, waiting for offers		
	Broadband Pick-ups	Assembled at PSI, tests with beam at CLEAR (CERN) Nov. 23		
	Faraday Cups	Mechanical design in progress		
Diagnostics	Scintillating Fibers	Location defined, technical design to be developed		
	Diagnostics Chamber	Mechanical design in progress, to be reviewed with diagnostics team		
	Spectrometer	Mechanical design for complete, ready for modification		
	Klystron-Modulator system	Procurement of key components in progress		
Installation at	Waveguide Network	Waveguide network layout complete, most waveguide components borrowed from CERN		
SwissFEL	Porthos Switchyard	Design complete, most components ordered and delivered, preliminary installation works		
	Radiation Protection	Study advanced, to be discussed with BAG		

Porthos Switchyard and P³ Installation

- Status:
 - Technical design Porthos switchyard complete
 - Most beamline components delivered
 - All girder footplates installed
 - Cables for magnets and BPMs installed
- Next steps:
 - Q4 2023: Start pre-assembly of Porthos girders
 - Spring Shutdown 2024: Aramis modification complete
 - Summer Shutdown 2024: Start Porthos installation

- PSI: R. Zennaro, M. Schaer, N. Vallis, B. Auchmann, I. Besana, S. Bettoni, H. Braun, M. Duda, R. Fortunati, H. Garcia-Rodrigues, D. Hauenstein, E. Hohmann, R. Ischebeck, P. Juranic, J. Kosse, F. Marcellini, T. Michlmayr, G. L. Orlandi, M. Pedrozzi, J.-Y. Raguin, S. Reiche, R. Rotundo, M. Seidel, S. Sanfilippo, N. Strohmaier, M. Zykova and all technical groups involved in the P³ exp.
- IJCLab: I. Chaikovska, F. Alharthi, V. Mytrochenko, R. Chehab
- CERN: R. Mena Andrade, W. Bartmann, H. Bartosik, M. Benedikt, T. Brezina, M. Calviani, S. Doebert,
 Y. Duthell, J.L. Grenard, A. Grudiev, B. Humann, J.-L. Grenard, A. Latina, A. Lechner, A. Marcone,
 K. Oide, Z. Vostrel, Y. Zhao, F. Zimmermann
- INFN-LNF: C. Milardi, A. De Santis, O. Etisken, S. Spampinati, P. Raimondi
- SLAC T. Raubenheimen
- KEK: Y. Enomoto, K. Furukawa
- INFN/Ferrara L. Bandiera, M. Soldani, A. Sytov
- INFN/Milano A. Bacci, M. Rossetti Conti

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology) Collaboration, <u>https://chart.ch</u> - CHART Scientific Report 2022: <u>https://chart.ch/reports/</u>

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.'

PAUL SCHERRER INSTITUT

