ETH zürich

Mechanical modelling and failure identification of impregnated Nb₃Sn Rutherford cable stacks

Xiang Kong¹, Theo A. Tervoort¹, Andre Brem², Douglas Martin Araujo², Michael Daly², Bernhard Auchmann^{2,3}

1. Department of Materials, ETH Zürich, Switzerland

- 2. Paul Scherrer Institution (PSI), Villigen, Switzerland
- 3. CERN, Geneva, Switzerland

11.10.2023

Swiss Accelerator Research and Technology

Introduction

Future Circular Collider (FCC)

CHART project

Swiss Accelerato Research and Technology

CERN website

xiang.kong@mat.ethz.ch

Ferracin et al. 2015 Transactions on Applied Superconductivity (Volume: 26, Issue: 4, June 2016) Daly et al. 2018 Transactions on Applied Superconductivity (Volume: 28, Issue: 3, April 2018)

Multiscale structure \rightarrow heterogeneous

Ebermann et al. 2018, Supercond. Sci. Technol. 31 (2018) 065009

Bibliography

'Strain - stress' identification

Fichera et al. 2019

Scheuerlein et al. 2019 Supercond. Sci. Technol. 32 (2019) 045011 Vallone et al. 2018 Transactions on Applied Superconductivity (Volume: 28, Issue: 4, June 2018) Fichera et al. 2019 Transactions on Applied Superconductivity (Volume: 29, Issue: 7, October 2019)

xiang.kong@mat.ethz.ch

11-Oct-2023 4

Image analysis: optical extensometer

Digital image correlation (DIC)

Measure local displacement by *undeformed markers* at cubic level (15 mm)

Courtesy of Tancogne-Dejean @MAVT-Mohr's lab

1440x1080 px², 17.1 μ m/px

Image analysis: optical extensometer

Displacement-controlled: $10 \mu m/s \sim 1 kN/s$ Image capture rate: $1 s^{-1}$ (273 images)

Displacement fields at low force (20 MPa)

ETH zürich

xiang.kong@mat.ethz.ch

DIC results up to 150MPa

> The strain values depend on 'mesh-equivalent' parameters (subset, step)

Particle tracking

Trackpy: python package for particle tracking

Strand core as natural mark (d~10 pixels)

Trajectory of each strand-core

- Most (380/400) strands are tracked during the loading
- There is a horizontal rigid body motion

160 140 120

00 00 Stress [MPa]

Fields comparison

Strand-based mesh

There is a good agreement of displacement fields between two approaches.

ETH zürich

xiang.kong@mat.ethz.ch

Strain field

-1.5%

 ε_{yy}

Deformation gradient F

$$\mathbf{F} = \frac{d\mathbf{U}}{d\mathbf{X}} + \mathbf{I} = \left[\frac{dU_x}{dx} + 1, \frac{dU_x}{dy}; \frac{dU_y}{dx}, \frac{dU_y}{dx} + 1\right]$$

Green-Lagrangian strain **E**

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathrm{T}} \mathbf{F} - \mathbf{I})$$

- Conclusion
- Strain localization at inter-stack and intra-stack
- □ Local tensile state (red) exists

From RT to LN₂

Still developing:➤ Liquid boiling affects image capture

Conclusion & Outlook

- An in situ full-field deformation measurement is performed at the level of cable stacks via two different image-based analyses
- Compressive strain localization can be measured both at inter-stack and intra-stack, even tensile state at few positions

- The approach will be applied at cryogenic temperature
- The deformation measurement can be compared with the numerical results at multiscale

Strand-like Azulejo (ceramic tilework) in Porto

Any questions?

Correction

Due to less stiff of Zwick-50 machine, the unloaddisplacement (hysteresis loop?) is not corrected properly.

ETH zürich

Machines with different measurements

Zwick050@D496

Global correction DIC

Zwick100@D467

Global correction MacroExtenso LaserExtenso DIC laser

Instron250@MAVT-Mohr

ETH zürich

xiang.kong@mat.ethz.ch

11-Oct-2023 17

Ongoing work @Z100-D467

Aims

MagComp: Mechanical modelling and failure identification of impregnated Nb3Sn Rutherford cable stacks

Cube level Cube level Stack l

Characterize mechanical properties of each components at ambient and cryogenics temperature
 Perform compressive tests on 10-stack sample

Experiment

Implement the constitutive model in finite element software

Numerical simulation