

SwissFEL:

The Big Picture

Athos upgrades:

ESASE: $\lambda_{seed} = 267/400/800 \text{ nm}$ EEHG: $\lambda_{seed} = 267 \text{ nm}$

Commissioning 2022/23

Soft X-ray FEL, λ = 0.65–5.0 nm Variable polarization, APPLE-X undulators First users 2021

Athos:

Linac:	Aramis:	Porthos:
Pulse duration : 1–20 fs	Hard X-ray FEL, $\lambda = 0.1-0.7$ nm	Hard X-ray FEL, $\lambda = 0.15 - 1.2$ nm
Electron energy : up to 6.2 GeV (7 GeV after upgrade) Electron bunch charge: 10–200 pC Repetition rate: 100 Hz, 2 bunches	Linear polarization, in-vacuum, variable-gap undulators First users 2018	Variable-polarization undulators (technology to be decided) Start of construction: 2029

Science Case: SCNAT/SSPS Roadmap

Content

Swiss Academies Reports, Vol. 16, No. 5, 2021

1	Quo	Vadis Lux Maior?
	1.1	List of Authors
	1.2	Management Summary
	1.3	Mission Statement
	1.4	Findings and Recommendations
	1.5	The Status Quo of Swiss Photon Science
	1.6	The Next Decade of Photon Science in Switzerland
	1.7	Relationship to Industry
	1.8	Impact on Education and Society
	1.9	Development of National Infrastructures
	1.10	Swiss Participation in International Organizations
2	Syn	chrotrons
	2.1	Executive Summary
	2.2	Findings and Recommendations
	2.3	List of Authors
	2.4	Purpose and Scope
	2.5	The Present Swiss Landscape
	2.6	Major Successes
	2.7	The International Context
	2.8	Synergies with other scientific techniques not based on photons
	2.9	References
3 Fr	Free	Electron Lasers
	3.1	Executive Summary
	3.2	Findings and Recommendations
	3.3	List of Authors
	3.4	Purpose and Scope
	3.5	The Swiss Landscape: today and tomorrow
	3.6	Major Successes
	3.7	The International Context
	3.8	Synergies with other Scientific Fields
	3.9	References
4	Inst	itution-Based Laser Platforms
	4.1	Executive Summary
	4.2	Findings and Recommendations
	4.3	List of Authors
	4.4	Purpose and Scope
	4.5	The Present Swiss Landscape
	4.6	Major Successes
	1.7	The International Context 4.9

Chapters on:

- Synchrotrons
- Free-Electron lasers
- Institution based laser platforms

swiss academies reports

swiss-academies.ch

Photon Science Roadmap

for Research Infrastructures 2025–2028 by the Swiss Photon Community

Porthos Science Case:

Time-resolved structural biology

- Goal: Resolve dynamics responsible for molecular functions ("dynamics-are-function")
- Require:
 - Shorter photon pulses (few fs or less) at still high pulse energy to:
 - enable "diffraction-before-destruction"
 - provide high-resolution data from smaller crystals (even single molecules?)
 - Higher photon energies (up to 20–25 keV) to:
 - give access to absorption edges of heavier elements

J. Spence, BioXFEL consortium

- Examples:
 - Identify position and orientation of small molecule ligands in a structure-based drug-design task.
 - Mapping of metal clusters acting as catalytic sites in enzymes.
 - Nanochemical synthesis of polyoxometalate clusters in dedicated storage proteins.

Porthos Science Case: Ultrafast chemistry

R. Shi, G. I.N. Waterhouse, T. Zhang, Sol. RRL 1 (2017) 1700126

- Goal: Study chemical processes with spectroscopy and scattering experiments
- Require:
 - Higher photon energies (12-35 keV) for:
 - Access to absorption edges of heavier elements (in particular 4d transition metals in spectroscopy)
 - Higher spatial resolution in scattering experiments
 - Higher penetration depths → more opportunities for in-situ and operando experiments
 - Shorter photon pulses (5 fs) to:
 - Improve temporal resolution
- Examples:
 - Pair Distribution Function scattering to resolve atoms in disordered or nanocrystalline materials
 - Gas-phase X-ray scattering to measure electronic dynamics.
 - Ultrafast hard X-ray scattering to study nanoplasma after laser interaction.

Porthos Science Case: Quantum materials

- Goal: study strongly correlated electronic systems
- Require:
 - Higher photon energies (20-25 keV) to:
 - Enable transmission experiments with thicker samples in forward-scattering geometry.
 - Enable diffuse scattering experiments on solids with good q-resolution
 - Bandwidth and polarization control (up to 14.4 keV) to:
 - enable single-shot, pump-probe X-ray magnetic circular dichroism studies
 - time-resolved resonant diffraction studies
 - Short pulses (sub-fs) for low-temperature experiments
- Also interested in:
 - Timed sequences of X-ray pulses with widely different energies to:
 - Perform transient grating spectroscopy to measure, e.g., electron-phonon coupling strength or q-dependence of ultrafast demagnetization.
 - Phase-locked pulse trains (with self-seeding) to:
 - Perform linear and non-linear spectroscopy of quantum materials

9,790-

Nat. Phys.

al.;

Porthos Science Case:

Single-shot ptychography and 3D imaging

- Goal: ultrafast imaging using single-shot ptychography or X-ray multiprojection imaging (XMPI) (splitting the incoming beam with a grating)
- Require:
 - High photon pulse energy
 - Use as many photons as possible
 - Higher photon energies (12-30 keV) to:
 - Penetrate thicker samples operando studies
 - (Improve spatial resolution)
 - Shorter photon pulses (5 fs) to:
 - Improve temporal resolution
- Examples:
 - Image ultrafast non-repeatable phenomena with high resolution in complex environments
 - Pump-probe studies of 3D dynamics with enhanced temporal resolution
 - Split-and-delay experiments to study ultrafast phenomena

source: Photon Roadmap for Research Infrastructures 2025-2028 by the Swiss Photon Community

Porthos Science Case: Novel opportunities at the ultrafast and high-intensity frontier

R. Schneider et al., Nat. Phys. 14 (2018) 126

Many novel opportunities are waiting:

- Quantum chemical imaging:
 - Exploit quantum characteristics of light to map chemical properties with high spatial and temporal resolution.
 - Requires intense, short pulses.
- Novel nonlinear spectroscopy approaches:
 - Nonlinear X-ray photon-in photon-out spectroscopy: compensate low nonlinear cross sections
 with higher intensity and increased interaction lengths from high photon energies.
 - Exploitation of temporal coherence and defined phase relations.
 - Spectroscopy with entangled photons from nonlinear parametric down-conversion of X-ray photons (XPDC).
 - Strong-field interaction phenomena:
 - Exploration of the **sub-fs** regime of X-ray non-linear interaction effects.
 - Photon-electron coincidence spectroscopy.
 - Fundamental physics questions: high fields (= high power)

Stefan P. Hau-Riege: High-Intensity Xrays - Interaction with Matter: Processes in Plasmas, Clusters, Molecules and Solids

Porthos Brain Storming, 10 May 2021

User requirements

All subfields require:

- 100 Hz operation
- High photon energies (min. 20–25 keV)
- Short pulses (≤ 5 fs, ideally sub-fs)

A few critical subfields require:

- High power (i.e. strong fields)
- Polarization and bandwidth control

Additional desires:

- Two color modes
- Phase locked pulse trains
- •••

Page 8

Porthos implementation

User requirements

Porthos implementation

All subfields require:

- **100 Hz operation**
- High photon energies (min. 20-25 keV)
- **Short pulses** (≤ 5 fs, ideally sub-fs)

A few critical subfields require:

- **High power** (i.e. strong fields) .
- Polarization and bandwidth control •

Additional desires:

. . .

- Two color modes .
- Phase locked pulse trains

Three-bunch distribution system

Increased electron energy and/or reduced emittance

Inter-undulator delaying chicanes (CHIC)

High-K undulators: cryogenic or superconducting

Apple-X undulators or phase retarder

Red: Porthos baseline

Violet: Pursue as alternative options

Porthos undulator line: original provision

Aramis line (in operation)

Original provision: 24×4.75 m = 114 m undulator line

Beam dump (certified to 7 GeV)

PSI drawing No. 2R-393601 (2019)

Porthos undulator line: possible configuration

Aramis line (in operation)

Space for RF and beam manipulation devices (active and/or passive)

20 × (3+1) m undulator modules ≈100 m undulator line (total, with large chicane) Beam dump (certified to 7 GeV)

PSI drawing No. 2R-393601 (2019)

Which undulator period for Porthos? (7 GeV)

(Model assumptions as for previous slide)

OSFA building extension

- First estimate making maximum use of space reserve.
- Additional building volume of 23'300 m³ (about 35% of existing OSFA!)
- First cost estimate is 35-40 MCHF.
- About two years construction time.
- Careful: building costs cannot be changed later!

First, rough budget estimate (all items ±20%)

- Machine:
 - Undulators: 20 3-m Apple-X modules à 1 MCHF, add 100 kCHF each for cryogenics and interundulator stuff: 20 × 1.2 MCHF = 24 MCHF
 - Cryogenic plant for undulators: 2 MCHF
 - New **gun laser lab** (incl. building extension): **6 MCHF**
 - Kicker upgrade and new kicker hardware: 2 MCHF
 - **Diagnostics upgrades** for dealing with 21 ns bunch spacing: **2 MCHF**
 - **RF upgrade** (X-band & C-band stations, injector upgrades as a preproject?): **25 MCHF**
 - Electron beamline components (vacuum, diagnostics etc.): 4 MCHF
 - Machine total: 65 MCHF
- Front end and photon beam transport (optics, monochromators, diagnostics etc.): 10 MCHF(?)
- End stations: 10–15 MCHF per station start with 1–2 stations? \rightarrow 20 MCHF
- IT & controls (general system upgrades and extensions): 5 MCHF
- Building extension: 35–40 MCHF first estimate \rightarrow 40 MCHF

\rightarrow Porthos total: 140 MCHF (±30 MCHF)

The case for high K

To reach high photon energy at a given (maximum) electron energy, you have to aim for low K values. Nevertheless, it makes sense to aim for large K values:

- 1) At a given wavelength and undulator period, the FEL power increases significantly with higher K value.
 - But this means the electron energy has to increase accordingly!
 - If the electron energy is limited, can only profit at longer wavelengths.
- 2) If both K and E are higher, the relative energy spread σ_{E} /E is smaller, the beam can be compressed more (higher peak current), giving even more power.
- 3) High K values provide a large tuning range for twocolor operation!

S. Reiche

