Oct. 18, 2023 @ PSI

Update from JP

Koichiro Shimomura J-PARC, KEK

BRIDGE2023

Versatile Quantum Beams for Microscopic World

J-PARC Facility (KEK/JAEA)

South to North

adron Exp.

Facility

JAEA

60km

NARITA

G

00MeV LINA

BRIDGE2023 Bird's eye photo in January of 2008

Beam Power History at MLF

Main ring upgrade plan

More Rapid Cycle:

2.48 s \rightarrow 1.32 s \rightarrow 1.16 s

- Main Power Supply to be renewed
- High gradient RF Cavity
- Improve Collimator
- Rapid cycle pulse magnet for injection/extraction

More Protons /

Pulse:

- Improve RF Power
- More RF Systems
- Stabilize the beam with feedback

In April 2023

Successful demonstration of MR-FX 30 GeV acceleration BRIDGE2766 kW eq. (2.17e14 ppp) in 1.36 s cycle

Materials & Life Science Experimental Facility

Neutron & Muon Beam Facility for Materials & Life S

The World Highest-Class Neutron & Muon Sources.

Neutron Source:
1MW
Liq. Mercury Target
Liq. H₂ Moderators

Muon Target Stati

2nd Experimental Hall

Proton Beam

Neutron Target Station

1st Experimental Hall

23 Beam Ports for Neutron Instruments 4 Beam Ports for Muon Instruments

Materials and Life Science Facility (MLF)

Neutron Instruments in MLF

23 beam ports21 in operation

Neutron Instruments at MILF

Muon Facility MUSE @ MLF

Experiments at MLF

BRIDGE2023

J-PARC muon g-2/EDM experiment

J-PARC muon g-2/EDM experiment

New radiation shields for beamline extension (2022)

The collaboration (114 members fro 10 countries)

Muon cooling test (2022~)

Muon cooling + acceleration test (2024~)

Muon g-2 and muonium

450 ppb

 $690 \text{ ppb}_{(2017)} \rightarrow 160 \text{ ppb}_{(2018)} \rightarrow 4 \text{ ppb}$

Muonic atom study @ J-PARC MLF

(1) QED verified with muonic Atoms [Phys. Rev. Lett. 130, 173001 (2023)]

TES

Goal : Verify strong-field QED with spectroscopy of muonic atom X-rays

Key technology : Superconducting TES microcalorimeters

Result : Proof-of-principle experiment with μ Ne atom

Outlook : scheduling the main experiment (µAr atom) in next February, 2024.

towards QED test in ultra-strong electric fields **beyond** the Schwinger limit

by introducing new TES detector for hard X-rays

(2) Muonic Helium Atom HFS

 $Dn(\mu He) = 4465.004(29) MHz$

Muonic Helium

Hydrogen-like atom similar to muonium

Excellent

resolution !

energy

Goal: Verify strong-field QED with spectroscopy of muonic atom X-rays

Key technology : Same technique as with Mu used to measure μHe HFS

Result :World record is achieved

Previous date: 6.5 ppm \rightarrow Our experiment: 4 ppm

Outlook :Sensitive tool to test 3-body atomic system and bound-state QED theory and determine fundamental constants of the negative muon magnetic moment and mass to test CPT with 2nd generation lepton

Operando μ^+ SR on Li-ion battery

Research of Li ion diffusion in a Li-ion battery

Self-diffusion coefficient of Li ions in Li_xCoO_2 has been measured with operando $\mu^+\text{SR}$ during a charge and discharge process (0.2<x<0.9).

ウムイオン

運動測定

最適化

D. Igarashi Ph.D student in Department of Applied Chemistry, Tokyo Univ. of Science

Nikkan Kogyo Shimbun (日刊工業新聞)

(b)

BRIDGE2023

Neutron lifetime experiment

The neutron lifetime differs significantly between measurement of decay and disappearance. This discrepancy is known as the "**neutron lifetime puzzle**". It is still an open question, whether some errors of experiment, or indicating new physics.

Neutron Interferometer

Neutron interferometers can precisely measure interactions with neutron as phase differences. The newly developed **multilayer interferometer** with a pulsed neutron source can use wide wavelength, simultaneously.

$$\Delta \phi = 2\pi \frac{m_n \lambda L}{h^2} \Delta E \propto \text{TOF}$$

Interference

fringe!

Oscillation in TOF

O-Beam

H-Beam

O-Beam w Cd H-Beam w Cd

0.6

0.5

0.4

0.3

T. Fujiie et al., arXiv:2308.01922

- Oscillation by interference of neutrons were clearly observed (visibility ~70%).
- ➢ Phase shift by inserting sample in a path was measured.
 → successfully measured scattering length.
- Further wavelength extension is planned to increase statistics by a factor of 20.

T-violation search using compound nuclei

P-odd and T-odd interactions can be largely enhanced in neutron induced compound nuclei New T-violation search experiment based on optical behavior of neutron can be performed without final state interaction. The fundamental study and development of polarized target and neutron polarization device are ongoing.

Advanced instrumentations with neutron optical devices at J-PARC

- Dr. Masako Yamada @KEK/ MLF, J-PARC Center

TUCAN Project

TRIUMF Ultra-Cold Advanced Neutron

Japan-Canada Collaborative Research

Goal of TUCAN

- Construct the world-leading Ultra Cold Neutron source
- To search the neutron EDM with the precision of $10^{-27} e \cdot cm$

Expected performance UCN Source

- Production rate 1.4 × 1
- 1.4×10^7 UCN/sec
- Source storage lifetime 28 sec
- UCN density in the source 3×10^3 UCN/cc
- Total number in the source 3×10^8 UCN

EDM measurement

- Initial density in EDM cel 200 Pol. UCN/cc
- To reach statistical sensitivity of $\sigma_d = 10^{-27}$ ecm **400 MT day**

Helium Cryostat System

- Cooling Power 9.6 W
- liquid 3He temperature 0.8 K
- He-II temperature
 - 1.0 K @ HEX
 - 1.1 K @ production volume

TUCAN Source Overview Combination of a spallation neutron source and superfluid helium UCN converter

First UCN production is scheduled in 2024!!

Cryogenic System Development at KEK

KEK is responsible for the superfluid helium cooling

To suppress UCN loss by phonon up-scattering, superfluid helium needs to be kept around 1.0 K

Main Heat Exchanger Cooldown superfluid helium by the liquid ³He

Details are presented in poster session!!

Experiments at Hadron Experimental Facility

BRIDGE2023

Hadron Experimental Facility

Development of Beam Line Components

Development of rotating target: Poster No.3 by H.Takahashi Development of displacement sensor: Poster No.9 by F.Muto

Status of beam dump: Poster No.7 by K.Agari

Beam control & Safety interlocks

Main control system is based on EPICS

COMET experiment

Phase

Phase II

- $\mu \rightarrow e$ conversion search $\mu^-+(A,Z) \rightarrow e^-+(A,Z)$
 - ✤ Very small O(10⁻⁵⁴) in SM
 - Discovery = New Physics!
- First commissioning in FY2022

COMET Hall

COMET Phase I & II

COMET Engineering Run

- Engineering run in Feb.-Mar. 2022 to study,
 - New C-Line proton beam property
 - Pion/muon production by 8GeV proton beam injection on graphite
 - Charged particle transport through Muon Transport Solenoid (MTS)

40

50

Momentum (MeV/c)

Particle ID

Summary

- J-PARC is the world leading intensity frontier proton accelerator research complex
 - 3GeV RCS/MLF: reached at 700kW stable operation
 - 30GeV MR
 - 515kW for neutrino
 - 64kW for hadron
- J-PARC is unique facility covering wide range of research fields
 - Particle, nuclear physics, material and life sciences and industrial applications, Archeology, planetary science
- J-PARC is open to world community for discovery and innovation
- Continue to achieve world leading scientific outcome