PSI/NUM and Large Scale Facilities Alex Amato :: NUM Head a.i. :: PSI

Research facilities in Europe

Paul Scherrer Institute – ETH Domain

Page 3

Paul Scherrer Institut – Mission

Political embedment

Synoptic view over Switzerland's university landscape

Paul Scherrer Institute – ETH Domain

Page 9

NUM in a nut shell

			Director Prof. Dr. Christian	Rüegg	Directorate Support Human Resources M	anagement	Dr. Thierry Karsten B	r Strässle ugmann	1100 1300
Research CommitteeProf. Dr. Marco Stampanoni1100Human Resources ManagementKarsten Bugmann1300Center for Proton TherapyProf. Dr. Damien Weber1700			Members of the board of directors: Prof. Dr. Gabriel Aeppli* Dr. Peter Allenspach Prof. Dr. Andreas Pautz Prof. Dr. Gebhard F. X. Schertler Prof. Dr. Thomas J. Schmidt Prof. Dr. Mike Seidel Dr. Thierry Strässle*		Safety Communications Science	Safety Communications Science		Dr. Werner Roser Dr. Mirjam van Daalen Dr. Ines Günther-Leopold Dr. Michèle Erat	
Quantum Criticality and Dynamics Prof. Dr. Christian Rüegg i.P. 1001					Finance and Administrative Services Technology Transfer		Dr. Frank Behner John Millard		1100 1110
Research Division Biology and Chemistry (BIO) Prof. Dr. Gebhard Schertler 2000	Research Division Research with Neutrons and Muons (NUM) Dr. Alex Amato a.i. 3000	Research Division Nuclear Energy and Safety (NES) Prof. Dr. Andreas Pautz 4000	Research Division Energy and Environment (ENE) Prof. Dr. Thomas J. Schmidt 5000	Research Division Photon Science (PSD) Prof. Dr. Gabriel Aeppli 6000	Research Division Scientific Computing, Theory and Data (SCD) Prof. Dr. Christian Rüegg a.i. 7000	Division Large Res Facilities (GFA) Prof. Dr. Mike 9 8000	earch Seidel	Division Logistics (LOG) Dr. Peter Allen: 9000	spach

• Responsible for the **operation**, **development**, **and scientific exploitation** of the **neutron and muon instrumentation** around the High Intensity Proton Accelerator (HIPA)

Page 12

Units	Headcount	FTEs
NUM staff + U.O.	10	8.2
LTP	65	61.0
LNS	47	45.4
LMU	19	19.0
LIN	45	43.0
LMX	30	29.9
Total NUM	216	206.5

and in addition about 31 FTEs based at PSI from associated research institutions

SANS-LLB

I II

Order of magnitude of performance increase (over SANS-II) for soft matter

e e

Novel reflectometer AMOR

Orders of magnitude of performance increase for growing field of thin films/ heterostructures

NEUTRA

Higher flexibility: Access to higher flux positions and use of higher resolution detectors

POLDI

5x performance increase for engineering diffraction

Page 15

PAUL SCHERRER INSTITUT S μ S -- Upgrades 1/2

MIXE Setup (Germanium array for nondestructive testing "GIANT")

- Reproducible
- Automatic LN2 refill
- 5 min sample change
- Max 8 freely rotating arms
- Max 4 BigMac HPGe per arm
- Digitizer 16Kanal, 2V/5V, 250 MSPS, 14-bit, 128 MSample/Kanal, MAW filter, (Struck SIS3316-250-14 VME)

FLexible Advanced MuSR Environment (FLAME)

- DR stick insert (T = 25 mK 300K)
- Warm bore 3,5 T SC, cryogen free
- Zero field $B < 5 \mu T$
- 10 ppm homogeneity, XYZ shim coils
- XYZ SC vector magnets (20 mT)
- Plastic scintillators with SiPM readout
- Active forward / backward vetos
- Time resolution: 160 ps
- Minimal sample size: 2x2 mm²
- Minimal sample mass: >12 mg

LEM upgrade "Super µE4"

- Upgrade μE4 beamline in 2025/2026 to increase LEM rate by 50%: smaller samples, higher external stimuli (illumination, electric fields), faster measurements, T_{min} = 100 mK (2.5 K now).
- Phys. Rev. AB 25, 051601 (2022), minimum fringe fields in LEM
- Delivery of all magnet parts by beginning of 2024

Vertex reconstruction using Si pixel detectors

Prototype test beam time in September 2023

• 4x4 MuPix11 chips (Heidelberg)

(b)

- 50 μm thin silicon chip on Kapton foil (preserves spatial resolution <1mm)
- Variable distance to confirm simulations
- Time resolution at the moment about 15ns (goal: <500ps)

Seite 19

SµS -- Vertex reconstruction using Si pixel detectors

Prototype test beam time in September 2023

- 4x4 MuPix11 chips (Heidelberg) ٠
- 50 µm thin silicon chip on Kapton foil ٠ (preserves spatial resolution <1mm)
- Variable distance to confirm simulations
- Time resolution at the moment about 15ns (goal: <500ps) ٠

Courtesy of T. Rudzki and Z. Salman

CHRISP: intensity frontier with pions, muons, UCN

Precision experiments with the lightest unstable particles of their kind

CHRISP -- High intensity Ultracold Neutron Source

Page 22

UCN – Present Situation

Situation after 12 years of operation:

- One of the two central flaps is defective, causing a large He leak into the storage volume. The flap remains permanently closed!
- ☺ The second central flap is already showing a small He leak.
- The sD₂ moderator container has developed a cold leak through which helium flows into the vacuum of the storage volume.

Project: EZE (Ersatz Zentral Einschub)

Projekt EZE

Major NUM Project in NUM: 'L-Project'Budget:about 1.55 Mio CHFstart:01.01.2023end:2027

Proton Irradiation Facility PIF

Main functions:

- user-lab for studies of radiation effects
- realistic simulator of space radiation environment
- source of mono-energetic particles
- radiation qualification of space technologies
- calibration of detectors
- application oriented and user-friendly facility
- part of ESA "European Component Irradiation Facilities ECIF"

Main parameters:

- proton energy range: 6 230 MeV
- proton flux range: $10^2 10^9 \text{ p/s/cm}^2$
- Gaussian-like profiles (FWHM 9 cm)
- options: focused (6mm) or flat beam profiles

Operation and User:

- ~120 test days/y with ~60 experiments/y
- ~150 visitors/y from about 40 institutions: research institutes, universities, aerospace and electronic industry from CH, EU, CHN and US
- main users: ESA and CERN

ESS Neutron Instruments

Swiss contribution:

- Total 165.6 MCHF (~3.5% until 2026)
- In-kind instruments fully provided by PSI (34 MCHF)

Instrument Estia

EUROPEAN SPALLATION

SOURCE

EMDAL

eflectometer

ument

- Reflectometer optimized for small samples (~1 mm²)
- Focusing neutron optics (Selene Guide) for high intensity and low background
- Full polarization analysis
- Usable wavelengths 3.75 Az
- Versatile bandwidth selection (14 Hz, 7 Hz, 4.66 Hz)
- → diffusion processes (batteries)
- \rightarrow magnetic particles
- \rightarrow heterostructures

Estia Science Case

- Focusing reflectometry
 - tiny samples down to 1 mm²
- Full polarization analysis
- High intensity for sub-s measurement on standard size
- Sample environment
 - low-T
 - high magnetic fields
 - solid-liquid interfaces
- Horizontal scattering geometry
 - extended sample space
 - convenient access
 - q up to 2 Å⁻¹

X. Z. Yu, et al., Nature 564, 95 (2018) [10]

[5] Y. Li, et al., Adv. Energy Mat. 8, 1701791 (2017)

anti- and ferromagnetic in one experiment × Sointronics [7] 1ML SMO 2ML SMO 3ML SMO

Artur Glavic, et al., Phys. Rev. B 93, 14 (2016)

V. Lauter, et al., Ref. Mod. Mat. Sci. Eng., Elsevier (2016)

Q_y [Å⁻¹]

IMPACT: HIMB + TATTOOS

- Complete rebuild of existing target station and beamlines for 100x improved muon intensities reaching $10^{10} \mu^+/s$.
- Research topics:
 - Searches for rare muon decays
 - Improved materials science with muons: faster, smaller/multiple samples, higher pressure
 - High-brightness muon beams
 - Research with high-rate, low-energy negative muon beams

- ...

Split Capture Solenoids for Muon Collection

- Two normal-conducting, radiation-hard solenoids 250 mm away from target to capture surface muons
- Central field of solenoids up to 0.45 T
- Graded-field capture solenoid for improved muon collection: stronger field at capture side, weaker at exit

MUH2/MUH3 Beamlines

- Layout of target and beamlines:
 - New TgH at the same location as current TgM
 - 90 degree angle of muon beamlines with first bend in the upstream direction
- MUH2 for particle physics using high-transmission solenoid based beamline
- MUH3 for µSR solenoid based beamline until experimental area; couples into existing beamline

Thank you !

Thanks to: Bertrand Blau Artur Glavic Stefan Janssen Michel Kenzelmann Klaus Kirch Andreas Knecht Bernhard Lauss Hubertus Luetkens Thomas Prokscha Zaher Salman

Spin-off: products out of fundamental research

Synchrotrons, world-wide

Applications in materials research as state-of-the-art X-ray detector