

Davide Reggiani

Muon Targets at HIPA

BRIDGE Workshop, PSI, 18.10.2023

- Introduction to the HIPA facility
- Design and operation of currently employed Muon Targets (TgM and TgE)
- Development of new Muon Target for IMPACT (TgH)
- Remote Handling of Muon Targets
- Conclusion

The High Intensity Proton Accelerator (HIPA)

The 590 MeV, 1.4 MW Proton Channel

Target M:

- π M1: up to 450 MeV/c π/μ
- π M3: 28 MeV/c surface μ

Target E

- π E1: up to 450 MeV/c high intensity π
- $\pi E3$: 28 MeV/c surface μ
- π E5: 10-120 MeV/c high intensity π/μ
- μE1: 60-125 MeV/c cloud μ
- μE4: 10-40 MeV/c high intensity surface μ

Beam Envelopes from Cyclotron Extraction to SINQ Target (with Magnet and Collimator Apertures)

Average losses away from targets: 0.6 W/m

Specifications:

•	Material:	Polycrystalline Graphite				
•	Mean diameter:		320 mm			
•	Target thickness:		5.2 mm			
•	Target width	:	20 mm			
•	Graphite der	nsity:	1.8 g/cm ³			
•	Beam loss:		1.6 %			
•	Power depos	sition:	2.4 kW/mA			
•	Operating T	emperature:	1100 K			
•	Irradiation da	amage rate:	0.12 dpa/Ah			
•	Rotational S	peed:	1 Turn/s			
•	Life time:		20000 h			

600 K

Target E Design

Since 2003:

Modified design with **gaps** to allow for thermal expansion

TARGET WHEEL

Material:	Polycrystall	ine Graphite			
Mean diameter:		450 mm			
Graphite density:		1.8 g/cm ³			
Operating Ten	nperature:	1700 К			
Irradiation da	mage rate:	0.1 dpa/Ah			
Rotation Spee	d:	1 Turn/s			
Target thickne	ess:	40 or 60 mm			
Beam loss:		30 or 42 % (after collimation)			
Power deposi	tion:	20 kW/mA (40 mm thickness)			
Cooling:		Radiation			

Temperature distribution simulation

New Slanted Target E tested in 2019 and in operation since 2020

Temperature and stress simulation of two target tiles (ANSYS)

Advantages of Slanted Geometry:

p-beam less likely to miss TE, **increased safety for SINQ Target**

Page 9

Grooved Standard Target E

Issue: horizontal centring of proton beam (2σ=1.5mm) on 6mm wide graphite wheel TE Risk: Unscattered, TE-missing beam delivers hotspot at SINQ target Transmission Measurement: not a reliable bypassing beam detection due to slits in TE New Idea: grooved TE introduces sizeable modulation of beam current signal if beam not centred First Tests with Prototype TE: July-September 2019 (Regular TgE)

Grooved Slanted Target E

Currently installed Slanted TgE also equipped with grooves (in the center) and shims (at the edges) for beam position detection

- More complicated arrangement because of slanted geometry
- Analysis of signas from grooves and shims still going on

Target E with New Bearings (Since 2021)

New (since 2021)

Stainless steel (balls) + WS2 (blocks) Koyo, Japan (Shun Makimura, J-PARC) In operation since 2021

- No TgE Exchange needed any more throughout the whole year!
- TgE exchange during long shutdown only.

Si3N4 (balls), MoS2 (Coating), Ag (ring & cage) GMN, Germany 1 -2 x exchange/year needed!

Old (2002-2020)

Operation in 2021: Stable **TgE rotation** and **TgE motor current** throughout the whole year (same in 2022)

The IMPACT Project

IMPACT: «Isotope and Muon Production using Advanced Cyclotron and Target technology»

- **HIMB**: «High Intensity Muon Beams», up to $10^{10} \mu^+/s$ at beamline frontend (Commissioning 2028)
- **TATTOOS**: Targeted Alpha Tumor Therapy and Other Oncological Solutions (Commissioning **2030**)

Concept new Target Station H for HIMB

Challenges

- Very limited space for the target insert: ~500 mm between 2 muon capture solenoids
- Short and wide solenoids with large fringing field introduce a vertical bend of proton beam
- Thicker target (**20 mm TgH** vs 5 mm TgM): higher beam losses & activation
- **Slanted target** geometry with large rim to maximize muon production

Page 16

Target H Insert

Page 17

Chosen Geometry (out of 6 considered)

- Two superposed half wheels (gaps allow thermal expansion)
- Polycrystalline Graphite, thickness: 3.5 mm (effective thickness 20 mm)
- Rim width: 100 mm

ANSYS simulation of one graphite tile (planar equivalent geometry) Beam Current: 3mA, Beam Size (σ_x): 1mm

Target H Chamber: Design and Simulations

Power Deposition from proton beam (3mA):

- 28 kW on target rim
- 35 kW on collimator KHH0

ANSYS Simulation of temperature distribution

- Total water flow rate: 1.5 kg/s
- Acceptable temperature values (max 90°C)
- Heat from secondary particles not yet accounted for

Proton Beam Trajectory Correction

Capture solenoid fringing field causes proton beam vertical displacement/tilt:

- Two new vertical steerer ٠ needed for bump correction
- Three scenarios considered ٠

Exchange Flasks for Remote Handling

K&P-EF

TargetE-EF

Target E + ~ 15 components in p-channel (vertical)

Diagnostic Elements, UCN Collimator (vertical)

UCN spallation target (horizontal) PORTHOS

TargetM-EF

Target M (horizontal)

Goal: transport highly active elements from beam line to hot cell

Max. dose rate at the flask surface: **2 mSv/h**

Remote Handling: Target M Exchange Flask

- Horizontal pull
- Weight empty: 19t
- Weight loaded: 20.5t
- Height: 1.7m
- Length: 2.5m

Remote Handling: Target E Exchange Flask

- Vertical Pull
- Weight empty: 42t
- Weight loaded: 50t
- Height: 5.3m
- Transports TgE + ~15 other P-Channel elements

- After almost 50 years, HIPA is still at the worldwide forefront of high power proton accelerators.
- Thanks to 2 graphite targets, HIPA delivers muon and pion beams amongst the most intensive worldwide.
- The planned upgrade TgM \rightarrow TgH will allow for unprecedented muon rates in the range of 10¹⁰ muons/s.

Acknowledgement

Many thanks to:

- Pedro Baumann
- Pierre-Andre Duperrex
- Sven Jollet
- Daniela Kiselev
- Andreas Knecht
- Daniel Laube

- Remi Martinie
- Thomas Rauber
- Rebecca Riccioli
- Jochem Snuverink
- Raffaello Sobbia
- Many Others!

PAUL SCHERRER INSTITUT

Overview of Secondary Beam Lines Parameters

	PiM1	PiE5	PiE1 Redesigned in 2012	PiE3 Redisigned 2010/2011	PiM3 New S-Rot in 2017	MuE4	MuE1
Target	М	E	E	E	М	E	E
Particle Type	e/μ/π/p	μ/π	π/μ/р	μ (surface)	μ (surface)	μ (surface)	μ (cloud)
Momentum Range	10-500 MeV/c	10-120 MeV/c	10-500 MeV/c ustream ASK 10-120 MeV/c downstream ASK	10-40 MeV/c	10-40 MeV/c	10-40 MeV/c	60-120 MeV/c
Typical Momentum	15-350 MeV/c	28-85 MeV/c	PP: 10-50 MeV/c μSR: 28 MeV/c Irrad: 300 MeV/c	28 MeV/c	28 MeV/c	28 MeV/c	60-125 MeV/c
Max Rate [s ⁻¹ mA ⁻¹]	2x10 ⁸	6x10 ⁹	4x10 ⁹	3x10 ⁷	3x10 ⁶	4x10 ⁸	6x10 ⁷
Typical Use	Particle Physics Test Experiments, Detector/Material Irradiation	Particle Physics Experiments	μSR Dolly Facility Particle Physics Experiment, Detector Irrad.	μSR HAL 9500 (High Field) Facility	uSR GPS and LTF Facilities	μSR LEM Facility	μSR GPD Facility
Users	- MUSE Coll. - PSI-PIF group - INFN Det. Group - ETH Detector Gr. - PSI HE Section - ETH Students - Others	- MEG Collab. - Muonic Helium Exp - Prot. Radius Exp - μ3E Collab.	- MuSun Collab. - Dolly Group - CERN/PSI Detector - PSI PP Group	μSR-SμS GPS/LTF	μSR-SμS High Field μSR	μSR-SμS Low Energy Muon	μSR-SμS GPD group