

Thomas Prokscha :: Laboratory for Muon Spin Spectroscopy :: Paul Scherrer Institute

PSI muon beamlines update

BRIDGE2023 Workshop, PSI, October 18th – 20th 2023

PAUL	SCHERRER		INSTITUT	
	-		Π	

Outline

- 1. Muon facility overview
- 2. Permanent installation of a U- and Z-branch in μE1
 - see poster of Cong Chen for details
- 3. Muon beam properties of the low-energy muon facility (LEM) at PSI
 - Reduced phase space degradation at new 1.7 μ g/cm² carbon foil of «trigger detector» (TD)
 - Status µE4 upgrade
- 4. Muons-On-REquest (MORE) in π M3 (GPS/FLAME instruments)
- 5. IMPACT/HIMB
 - development of vertex reconstruction for μSR spectrometers, based on Si-pixel detectors

Current status of μE_1 , poster of Cong Chen

- Long Decay channel:
 - wide momentum range
 - 50 125 MeV/c
 - High flux > $10^7 \mu$ -/s
- Extraction part:
 - 2 bending magnets and 12 quadrupoles
 - Allows for optimizing beam properties
- GPD (General Purpose Decay Channel Instrument),
 - Enough space for a new "Z-branch"
 - limited impact on the old application

Current status of μE_1 , poster of Cong Chen

Beam envelope calculation of μ E1 with new layout

The fitted TRANSPORT beam optics and TURTLE simulation for the original GPD side with a rotated bending magnet $(2^{nd} \text{ order calculation}, \Delta p/p=3\%)$

Beam envelope calculation of μ E1 with new layout

For MIXE (rotated ASK82): Calculations of beam envelopes, 2^{nd} order calculation, $\Delta p/p=3\%$

Low-energy (keV) μ^+ (LEM) facility at PSI

Rates are for 4-cm "slanted" target E and 2.0 mA proton current (2021)

Muon beam properties of LEM facility

Slide from 2022 workshop

Problems

- Extraction at moderator with grids increases horizontal phase space
- Interaction of beam with 10-nm carbon foil of TD:
 - Increase of transverse phase spaces:
 - $\circ~$ Increase of transverse phase spaces:
 - $\circ~$ Energy loss distribution:
 - Energy loss distribution:
 - Muonium formation:

deteriorates beam spot reduces beam transmission deteriorates beam spot TOF distribution limits time resolution to 5 ns reduces polarization of the beam at sample

Improvements

- Change extraction to Soa lens type as in J-PARC USM facility (WIP)
- 10 mm or 15 mm collimator at TD
 - $\,\circ\,$ Beam reduction of 50%, but beam spot much better: 5x5 mm² samples possible
 - $\circ~$ Up to 5 samples can be mounted on one sample plate
- Replace carbon foils by graphene foils: WIP, so far not successful; use 1.7 μg/cm² foil instead of 2.6 μg/cm²
- Upgrade of μE4 beam in 2026 (WIP)
 (acf-metals.com)
 - o replace last quadrupole triplett by special solenoid: 50% more surface muon on moderator target

 $1.7 \,\mu\text{g/cm}^2$ carbon foil in LEM TD.

TOF from TD to sample position

$1.7 \,\mu\text{g/cm}^2$ carbon foil (ACF) in LEM TD

^{2020: 2.6} μg/cm²; 2023: 1.7 μg/cm²

^{2020: 2.6} μg/cm²; 2023: 1.7 μg/cm²

2020: 2.6 μg/cm²; 2023: 1.7 μg/cm²

1.7 μ g/cm² carbon foil, time resolution for LE- μ SR

- Upgrade μE4 beamline to increase LEM rate by 50%: smaller samples, higher external stimuli (illumination, electric fields), faster measurements, T_{min} = 100 mK (2.5 K now). Total costs: 250 kCHF.
- L. Zhou et al., Phys. Rev. AB 25, 051601 (2022), minimum fringe fields in LEM

Muons-On-REquest (MORE) in π M3

- Fast HV-kicker broken in 2015
- New fast kicker design finished in 2022, commissioning planned for 2024
- MORE combines the advantages of continuous (high time resolution) and pulsed beams (low background)

Muons-On-REquest (MORE) in π M3

Figure 2. (a) Schematic circuit of the fast-switching deflector ("kicker") for muons on request. Power per switch ≤ 600 VA, repetition rate ≤ 40 kHz, voltage $|U| \leq 10$ kV between electrodes, switching time: <25 ns (10–90%). (b) Driving circuit for one switch. Delay between trigger signal input and high-voltage R. Abela et al., Hyp. Int. 120/121, 575 (1999)

Muons-On-REquest (MORE) in πM_3

- Fast HV-kicker broken in 2015
- New fast kicker design finished in 2022, commissioning planned for 2024
- MORE combines the advantages of continuous (high time resolution) and pulsed beams (low background)

R. Abela et al., Hyp. Int. 120/121, 575 (1999)

IMPACT – a major upgrade proposal for HIPA

Current limitations of µSR at PSI:

- Maximum rate 40k muons/s
- Sample area > 4x4 mm²
- Thickness > \sim 200 μ m, < 200 nm

Pulsed beam

- Pump-probe measurements
- Multiple stations in parallel
- Semi-integral measurements

Science case: https://arxiv.org/abs/2111.05788

Vertex Reconstruction

- Novel small samples
- Multi samples in parallel
- >10x faster measurements
- 10x higher pressure/strain

High Rate

- Extend muon range to 200 nm 200 μm ("sub-surface muons")
- 10x more low energy muons for thinfilm and device applications (< 200 nm)
- Elemental analysis tomography (mm sized objects)

IMPACT – a major upgrade proposal for HIPA

- Vertex reconstruction with ≤1 mm resolution to fully exploit the >20 times higher beam intensities made available by HIMB (in collaboration with U Heidelberg, U Mainz, LTP and U Zurich).
- A «game changer» for μSR! (HIMB Science Case: https://arxiv.org/abs/2111.05788)

Vertex reconstruction using Si pixel detectors

Vertex reconstruction using Si pixel detectors

Benefits of pixel detectors at continuous muon beams:

- overcome rate limitation, increase rate by > 1 order of magnitude
- overcome sample size limitation: < 1x1 mm² instead of > 4x4 mm², measurement of multiple samples simultaneously, 10 – 100 times faster experiments
- reduction of uncorrelated background by tagging and tracking μ 's

Prototype from Mu3e experiment, U Mainz, U Heidelberg, LTP

SNSF project approved in 3/2023: Zaher Salman In collaboration with U Zurich and LTP, Lea Caminada

Schematic for a μ SR spectrometer using thin Si pixel sensors

HIMB EAB - May 8th 2023

Thomas Rudzki - A thin silicon detector for µSR

MuPix11

- HV-MAPS (high-voltage monolithic active pixel sensor)
 - 180 nm HV-CMOS process
 - o digital readout fully integrated
 - charges in silicon collected fast via drift

2023 prototype

- 4x ultra-thin detection ladders
- 50 µm thin silicon chip on Kapton foil
- variable distance between inner layers

Thomas Rudzki - A thin silicon detector for µSR

External:

- Marius Köppel (Mainz)
 - PhD student in the Mu3e group
 - Firm- and software, simulations, data taking and analysis
- Lukas Mandok (Heidelberg)
 - Master student
 - PCB design, data taking and analysis
- Thomas Rudzki (Heidelberg @PSI)
 - Postdoc in the Mu3e group
 - Module construction, data taking and analysis
- Heiko Augustin (Heidelberg)
 - Postdoc in the Mu3e group
 - Sensor development and characterisation

PSI:

Zaher Salman

- Research scientist, LEM group
- Conceptual design, simulations, data taking and analysis
- Thomas Prokscha
 - LMU head
- Hubertus Luetkens
 - Bulk µSR head
 - muon beam setup
- Lea Caminada
 - LTP high energy group leader
- Hans-Christian Kästli
 - senior scientist
 - development ultra-fast pixel detectors
- Tilman Rohe
 - senior scientist

Wir schaffen Wissen – heute für morgen

Thank you for your attention!

Thank you Cong Chen and Thomas Rudzki for providing slides!

Pileup at continuous muon beams

Page 33

R_. (kcps)