

Rustem Khasanov :: Scientist :: Paul Scherrer Institut

Muon-spin rotation/relaxation under hydrostatic pressure: outlook and perspectives

Bridge2023, October 18th – October 20th, 2023

В

Ρ

Common tuning parameters

Room temperature superconductivity

Wikipedia

Khasanov, Journal of Applied Phys. 2022

μ SR under pressure

- 1. Muon beam-line fast muons with tunable energy
- 2. μ SR Spectrometer
- 3. μ SR pressure cells

The use of the spllited Quadrupolar magnet (QSK81) allows to collect muons with turned spins. This a unique possibility which is accessible for decay muon beam-lines.

The first spin-rotation experiments were conducted in TRIMF at M9B beamline

Khasanov, Journal of Applied Phys. 2022

Asymmetry spectra in spin-rotated TF mode

The initial asymmetry, $A_{LR} = 0.25$, corresponds to about 60° spin rotation!

Construction material suitable for μSR

Nonmagnetic Alloys

	СиВе	TiAl ₆ V ₄	NiCrAl	MP35N
Yield strength	1.1 Gpa (300 K)	1.05 Gpa (300 K)	2.06 Gpa (300 K)	2.15 GPa (300 K)
Young modulus	131 GPa (300 K)	97 Gpa (300 K)	190 Gpa (300 K)	215 Gpa (300 K)

Sintered materials

	WC	cBN	SiC	ZrO ₂ -Y ₂ O ₃	Al ₂ O ₃ -ZrO ₂	Si ₃ N ₄
Compressive strength	5.0-11.0 Gpa	2.9 GPa	7.6-8.3 GPa	2.20 GPa	4.7 GPa	5.1-5.5 GPa
Young modulus	600-670 Gpa		918 GPa	210 Gpa	357 GPa	241 GPa

- Strong enough to hold the pressure
- Should not have "strong" µSR response
- Should have temperature independent response

Khasanov *et al.*, High Pressure Research. 2016 Shermadini, Khasanov *et al.*, High Pressure Research. 2016 Khasanov *et al.*, High Pressure Research. 2022 Khasanov *et al.*, High Pressure Research. 2023 Page 10

Pressure cell construction: compound cylinder

$$p_{max} \propto \frac{1}{2} - \frac{a^2}{2b^2} \qquad p_{max} \propto \frac{1}{2} - \frac{c^2}{2c^2} - \frac{c^2}{2b^2} \qquad p_{max} \propto \frac{3}{2} - \frac{a^2}{2c_1^2} - \frac{c_1^2}{2c_2^2} - \frac{c_2^2}{2b^2}$$

For **a**=6 mm and **b**=24 mm, $p_{max}^{s} \div p_{max}^{d} \div p_{max}^{t} = 1 / 1.6 / 1.96$

Three-wall pressure cell construction

Pressure determination, pressure probes

Contact (feedthroughs)

Force Force Lock-in Amplifier Pick up Excitation 50 mm Pressure Media Ruby $n_1 = 800$ uiuuuu Sample Gasket • $n_3 = 400$ = 400 . Force Force Sample In

Resistivity, AC susceptibility, NMR, NQR, specific heat, optical ...

Optical, AC susceptibility, NMR, NQR, specific heat, Neutron scattering (equation of state)...

Substantial part of the pressure cell volume is occupied by the pressure indicator

Contactless

Double volume piston-cylinder cell

Naumov...Khasanov, Phys. Rev. Applied, 2022

Naumov...Khasanov, Phys. Rev. Applied, 2022

Risk potential of laser classes

Laser class		Measures		
Class 1	Safe under all conditions of normal use	No measures neccessary		
Class 1M	Safe if not viewed through optical instruments	Warn persons with optical instruments		
Class 2	Harmless for a moment	Do not stare into beam, do not aim at faces		
Class 2M	Safe if not viewed through optical instruments	Warn persons with optical instruments		
Class 3R	Considered safe if handled carefully, with restricted beam viewing	To be used by trained personal only		
Class 3B	Hazardous if the eye is exposed directly to the beam, scattered radiation considered harmless	Separate area constructional, restricted access Signal laser at the entrance To be used by trained personal only Wear laser goggles		
Class 4	Can cause permanent eye damage and burn the skin as a result of direct or diffuse beam viewing; fire hazard	Measures as given for class 3 Where required use additional protection for body parts		

Safety concern: Laser *vs*. LED light

Ruby and Sr tetraborite

Khasanov et al., High Pressure Research. 2023

Uniaxial pressure (Strain cell)

Hubertus Luetkens Zurab Guguchia Matthias Elender

Clifford Hicks

Hans-Henning Klauss Rajib Sarkar Vadim Grinenko

Shreenanda Ghosh

Scientific example

1. The uniaxial and hydrostatic pressure effects on TRSB in Sr₂RuO₄

Broken Time Reversal Symmetry

- Spontaneous field seen below T_c, for P_m//c, //a.
- B_{loc}~1G.

Luke et al., Nature 394, 558 (1998).

Grinenko et al., Nature Phys. 2021

Hydrostatic pressure experiments

Grinenko... Khasanov, Nature Comm. 2022

Combined graph data

PAUL SCHERRER INSTITUT

Wir schaffen Wissen – heute für morgen

My thanks go to

- Matthias Elender
- Alexander Maisuradze
- Zurab Shermadini
- Zurab Guguchia
- Debarchan Das
- Ritu Gupta
- Gediminas Simutis
- Stefan Klotz
- Mark Janoschek
- Alex Amato
- Hubertus Luetkens

