KEK PSI Workshop "BRIDGE 2023" on PSI at Oct/2023

Nuon Microscopes

Yukinori NAGATANI (KEK IMSS)

Contents

1. ΤμΜ: Transmission Muon Microscopy

2. Sμ⁺**M**:

Scanning positive Muon Microscopy

3. Sμ⁻**M**:

Scanning negative Muon Microscopy

ΤμΜ: Transmission Muon Microscopy

It visualizes Electromagnetic Fields in thick specimen

Our Goals by Visualizing Ele/Mag-field

• Our modern civilization is constructed on Electromagnetism. Computer / Semiconductor / Communication dev. / EV / Rader / ...

Power Devices: Power/RF Tr, Capacitor, Magnet, Battery, Piezo, ...

Axon fiber

Making them **higher voltage / higher speed / higher efficiency** contributes to **industrial benefits** and **SDGs** of our society by realizing smarter EV / power grid / comm. networks / radar ...

- Visualization of EM-field in devices makes them higher performance.
 eg. : Specifying field concentration design of relaxation → Higher voltage dev.
- Brain / Nerves system uses network of action potential to process our thinking, emotion or consciousness

Visualization of EM-field in bulk object is quite important subject in wide fields including industry and life science.

Muon can visualize EM-fields in objects

- The highest material permeability by acceleration
- Mass production by accelerator
- High resolution and high sensitivity by beam-cooling
- Magnification of Image / Visualization of EM field
 by Electron Microscopy Technologies
- High resolutional Image-detection by Direct-detecting CMOS Image Sensors for Electron Microscopy

Combining accelerator technology and electron microscopy one allows us it

Penetration-capability of e and µ

Transmission Electron Microscopy (TEM)

It visualizes EM-field by highest resolution:

Methods : Lorentz Microscopy, Electron Holography、Phase-Contrast TEM Targets : Transistor(Rau), Mag-field among atoms(Shibata),

Membrane Potential for liposome (Sigworth), ...

Recent Topics : HVEM by RF-Accelerators

Recently, linear accelerators are applied into HV-TEMs.

This high-voltage transmission electron microscope is much smaller than earlier models, which can take up an entire two-storey building. Credit: Yukinori Nagatani/NIPS

PHYSICS · 18 OCTOBER 2019

How to improve a huge super-resolution microscope: shrink it

Physicists redesign an enormous and costly imaging device to make it smaller and cheaper.

NIPS 500kV Linac TEM by Y.N. [PRL123(15)2019]

Osaka U. 3MV RF-Gun TEM by J. Yang [Microscopy, 291-295 (2018)]

Concept of Transmission Muon Microscopy (TµM)

- Properties of electron and muon are very similar.
- Accelerator-generated muon can be higher luminance.
- Accelerated muon has strong penetration capability to materials

By employing muons instead of electrons in TEM, Ele/Mag-fields in thick object are visualized.

Essence of the Transmission Muon Microscopy $(T \mu M)$

Comparing with present methods

	Mag-field	Ele-field	Penetration Power		Versatility of specimen
muon (T μ M)	0	0	0	$10\mu\mathrm{m}{\sim}\mathrm{cm}$	Widely acceptable
electron (TEM)	0	\bigcirc	×	100s nm \sim a few μ m	should be Ultra-thin
neutron	0	×	0	a few cm	Widely acceptable except for B, Gd, Cd,
Circular polarized X-ray	\triangle indirect	×	\bigtriangleup	10μ m	should has X-ray magnetic circular dichroism.
Optical Kerr scope	\triangle indirect	\triangle indirect	trar	nsparent or surface	Limited to transparent magnetic or nonlinear optical materials.
Ca-Imaging	×	\triangle indirect	transparent life-tissue		Ca density measurement in life.

Phase 1: 5MeV TµM

Essence of the Beam Cooling

- Momentum distribution is cleared by stopping.
- Volume in phase space (emittance) is shrunken down. = Beam-Cooling
- Iteration of this process can cool the beam down much more.

Single-step / Multi-step Beam Cooling

Diffusion in the thin target

Diffusions of Mu in mesoporous silica are evaluated t=210nm, $\rho = 1.1$ g/cm³, D=1.6 × 10⁻⁴ cm²/sec = 16 nm²/nsec.

Mu-Evaporation from the target

Muoniums are evaporated \sim 60% from back plane and \sim 30% from front plane.

Rate for passing thorough additional 3steps \sim >10%.

The 3 steps-cooler improves $\times 10^8$ Luminance for US-Muon beam.

5MeV Muon Cyclotron

about 70-turns in 1µsec

00

F-Lee

MICCO

Beam-pipe

15

RF Co-ax

Conventional Acceleration

Inflector

injects muon beam from back into circular orbit

-Dee

Cyclotron installed in U1B area MLF/J-PARC

5MeV TµM : Cyclotron + Main Column of TµM

Accelerated muon beam is vertically injected into T μ M column. This is the design for prototype. It's resolution is $\sim 1 \mu$ m.

R&D of lenses for TµM

Superconducting Object Lens

Normal Conductor Lens

Superconducting Coil with persistent current SW

Meissner Shield for field convergence

Transfer from JEOL to KEK

Magnetic field is guided to be focused by Meissner shields rather than pole-piece / yoke.

40MeV TµM becomes 8∼9m Length by scaling design of TEMs.

Phase 2: 40MeV TµM

At the H2 extension building, max synergy with the g-2/EDM experiment

Visualization of Electromagnetic Fields

Lorentz Method

visualizes distribution of beam deflection:

Zernike Method

visualizes electrostatic potentials:

TμM can visualize electromagnetic field in a bulk specimen. The 3D distribution is also obtained by Computed Tomography.

Visualization of Elec-Potential by Phase-Contrast Acc Dec in Material ΔV e e е Phase Shift: C (\mathbf{H}) N O $\boldsymbol{\Theta} = (e/h) \boldsymbol{\Delta V} \times Passing-Time$ Muon beam / Beam spot Center hole Muon beam Carbon foil Specimen- μ m $t\sim 10 nm$ **Object Lens** Zernike Phase Plate Phase Plate -Projection $I(x) = ||e^{i\theta(x)}||^2 = 1,$...No Contrast Lens Insertion of the Zernike Phase Plate $I_{ZPP(\chi)} = \frac{1}{2} \left\| 1 + e^{i\theta(\chi)} \times e^{i\pi/2} \right\|^2 = \frac{1}{2} - \frac{1}{2} \sin \theta(\chi).$ Phase-shift is converted into Contrast 24

Test of muon imaging by CMOS Image Sensor

- CMOS Image Sensors for TEM are too expensive for test (>100k\$).
- We have tested imaging-capability of commercial digital camera (3k\$) Nikon Z7II.

Specification:

Sensor Size Pixels Color CMOS Sensor, Nikon FX format 35.9×23.9 mm 8256×5504 , $43 \,\mu$ m $\times 43 \,\mu$ m

There are several objects which disturb incoming muons on the sensor: vibration plate for dust-cleaning, low pass filter, Infra red filter, glass window, and color filter.

Set-up of the test

Rotating Stage

Detected Images

Muon images by CMOS Sensor

000 Img Muon images by fluorescent screen

• RESULT:

CMOS image sensor can detect positive muons as images.

- We can detect each projected muon, namely, muon-counting.
 - ➡ Super-resolution is available.
 - → Spatial resolution can be < 30 µ m.</p>

Elec-field in High Voltage Transistor (AIST)

• AIST Power Electric Group developed 14kV SiC MOS FET.

(Highest commercial device is 3.3kV)

- By finding points of electric field concentration and break-down, we can develop more high-voltage devices. → down-sizing, energy-saving.
- Efficient Electric Vehicles, Power-Grids → SDGs。
- Applicable for any power devices not only SiC but also GaN, Ga₂O₃.
- By GHz Stroboscopic imaging, **RF fields** are also visualized
 → Speed up the **communication network**, Higher performance **Rader**...

For High Performance Electric Devices

 $E = (C/2) \times V^2$

TµM visualizes the field concentration and break-down phenomena.
 ➡ It helps to develop higher performance condensers.

Motor, transformer, generator

• Piezo, ultrasonic devices

 \rightarrow EV, Power Grid,

→ Medical、 Non-destructive inspection.

Applications for Material / Engineering Fields

~2um

2.3% stop

in specimen

- Electromagnetic fields in Semiconductor Devices. IC, LSI, Memory, RF semiconductor devices, Reverse engineering of packaged devices.
- Electromagnetic field in Li ion Battery. Visualization of inside during (dis)charging.
- Electric fields in Piezo Devices Ultrasonic transmitter, US-motor, US-actuator.
- Magnetic field in permanent magnet. Visualization of grains and domain walls
- Electric field in Quantum dots. (+ substrat Solar cell, display, plasmonic devices.
- •µSR in a diamond anvil cell for room temperature Superconductors like CH₈S. (Planed at Phase-2 at H-line)

ecay positror Decay positron

Functional Visualization of Neurons by TµM

Stroboscopic Visualization of Action-Potential Propagation in Living Neurons in Environmental Cell

• Visualization of living neurons/networks.

- Live cells/organs in an environmental cell. in bio-liquid at room temp and pressure with windows.
- Electric pulse stimulation is synchronized with the muon pulse.
- Timing delayed Δt is scanned.

3D Tomography of Action-Potential in Neurons frozen just after an electrical stimulation

Functional Visualization of Neurons by TµM

Our Goal in Life Science :

Integrated / unified understanding among multi-layers: synaptic level / neuron level / network level / organ level.

TµM becomes really important method for brain / bio sciences.

Phase-X: EM-Fields Imaging for Industrial Use

Visualizing distribution of beam-deflection by specimen. It uses accelerator-generated muon beam directly:

- Beam cooling and re-acceleration is not required.
- While resolution is limited \sim 3um, cm object can be observed

Work of the Method

Lorentz-like and Talbot-Lau-like

For High Performance Accelerator (TITech Hayashizaki)

• Particle Accelerator uses strong RF field in resonant cavity.

- Higher RF field makes smaller and higher accelerator (\sim 100MV/m), **Electric break-down** of high RF field limits the highest acceleration.
- Physics of the electric break-down in high RF field is unknown.
- Muon can visualize **the EM field in working accelerators**.
- **RF break-down** and **transitional phenomena** are visualized
 Developing the ultra high performance accelerator.

For High Performance Propulsion System in Aerospace

• Ion engine / Hall thruster : generate plasma-jet by electricity.

- Complex interactions among EM/RF field and ions/electrons. Space-charge effect limits the thrust.
 - ➡ Measurement of 4D EM field makes more efficient and more thrust.
- **Rail-gun** : An acceleration system by Lorentz force.

Ref: Wikipedia: The velocity skin effect in railgun.

At high velocity (~7km/sec), velocity skin effect limits the highest velocity. Current concentration → plasma generation → dissipation→ velocity limit.

Muon visualizes the Lorentz force directly!

4D visualization of velocity skin effect makes design of **higher velocity Rail-gun**.

Sµ+M: Scanning positive-muon Microscopy

Nano-resolutional **2D/3D mapping** of **µSR spectroscopy** on/in specimens

Muon spin polarization maintained Cooling

Scanning positive Muon Microscopy: Sµ+M

Specimen is Scanned by focused μ^+ beams,

for µSR Spectroscopy

It works as a Scanning μSR Microscope: μSR Spectrum is obtained point by point! 3-dim mapping of magnetic field and its fluctuation, density of Fermi surface, state of hydrogen, and etc., in Nano/Micro Resolutions.
Members

Laser Devices :

Lv- α

Target

(A)Beam Cooler

Accelerato

Muon

Lens

Direction : Y.N (KEK, Fusion of Microscopies and Accelerators)

Lv- α

Target

Cyclotron and Beamlines:

Lens

femto sec

Laser

Target

Focusible

muon

Flat-top Cavity

Accosity

(B)Muo

Beamline Management : Koichiro Shimomura

Akira Goto (Riken/KEK, Cyclotron)

Collaboration and Partners

•	KEK	Muon group: g-2/EDM group: Accelerator facility: Cryogenic group:	Y. N., T. Yamazaki, P. Strasser, S. Kanda, S. Nishimura, S. Matoba, Y. Ikedo, T. Yuasa, N. Kawamura, Y. Ohishi, A. D. Pant, M. Tampo, S. Doiuchi, A. Goto, K. Shimomura, Y. Miyake. T. Mibe et.al. (g-2/EDM collaboration) Toshikazu Adachi, H. Someya, M. Yoshida. T. Ogitsu, K. Sasaki, N. Kurosawa.		
٠	RIKEN		J. Ohnishi, Taihei Adachi.		
•	Tokyo	I.Tech	T. Sannomiya, N. Hayashizaki.		
•	AIST		H. Sato, T. Kuroiwa, K. Sakamoto, F. Kato.		
•	• NIPS		K. Murata.		
Industry		ry	(Sumiotmo HI) K. Kumada, S. Kusuoka, K. Onda, Y. Tsutsui. (JEOL) M. Iwatsuki, (Terabase) Y. Arai.		

Summary

- TµM clarifies how our brain works, by **functional imaging of macroscopic neural systems** in nanometer resolution.
- Visualization of electromagnetic fields in bulk object is widely applicable to material science and engineering fields, so our modern material civilization is depending on electromagnetism.

Sµ⁻M: Scanning negative-muon Microscopy

2D/3D mapping of **elements** in µm-resolution

Goal of Sµ⁻M

Specimen is scanned by focused μ⁻ beam

Muonic X-ray analysis

 2D/3D mapping of elements, isotopes and chemical situations.

High sensitivity for light elements
 Applicable to Life consisting from C, N, O.

Application: 3D elemental map of Life

Comprehensive 3-dimensional mapping of elements/isotopes for life/tissues. →New generation of the life-informatics

- 1. Rapid freezing
- 2. Taking elemental images serially with cutting the frozen tissue.
- 3-dimensional elemental map is obtained in μm resolution.

This method is a destructive measurement.

Beam Cooling of negative muon

Generation of Focused neg. Muon Beam.

- 1) Muon Catalyzed Fusion (μ CF) is applied to the beam-cooling. Captured muon into atom is dissociated with low energy \sim 10keV after μ CF.
- 2) Accelerator muon is captured by solid H2 with mm-thickness.
 p μ is converted into d μ, and d μ diffuses in mm-range by
 Ramsauer-Townsend effect.
- 3) μ CF on thin DT-layer on solid H2 dissociates the muon. The muon is transported into center by E-field.
- Muon beam is extracted, is cooled frictionally, and is focused on specimen.

Negative Muon Collector

Negative Muon Beam from Accelerator

Use of Ramsauer Townsend Effect

- Solid H2 Layer : 1mm : 99.9% H_2 + 0.1% T_2 , Solid DT Layer : 1 μ m : 70% D_2 + 30% T_2 .
- Injected μ^- stops at Solid H2 Layer \rightarrow p μ is formed.
- Isotope exchange: $p\mu + t \rightarrow t\mu + p$ t μ obtains kinetic energy around E~40eV.
- Thermally tµ relaxes into sub meV. At the way, its scattering cross section becomes almost zero at E \sim 1eV by Ramsauer Townsend effect.

• Finally, tµ diffuses in sub mm range.

Negative Muon Collector

Negative Muon Beam from Accelerator

Parts of Cooler, Converge, Scan and Detection

 Frictional Cooling using carbon foils of 10nm thickness.

- Object Lens assisted by Chromatic Aberration Collector focuses beam into 10um diameter.
- XY-Scan, and retarding voltage scan.
- Detect X-ray Spectrum

3D mapping of Elements, Isotope and Chem.Props

Expected Performance

The Sμ⁻M expected to have resolution <10μm, **when Tritium is used.** DD-fusion is less performance.

	DD-Fusion Only D	DT-Fusion using T	
Re-emission rate of $\boldsymbol{\mu}$	2.0%	85.3%	
Available # of μCF cycle	Only 1 step	More than 10 steps	
Diameter of extracted μ beam	10mm	<0.1mm	
Diameter of focused μ beam	1mm	<10 <i>µ</i> m	
Beam strength of μ	\sim 1/sec	>30/sec	

\Rightarrow Luminance Ratio (DT/DD) = 100 \times 100 \times 30

Use of Tritium is essential.

Optimization of the neg μ collector

Negative muons from accelerator

 We search the most efficient design to collect μ⁻ by electric potential V(r)~1/r. For generalization, conical form of the collector is assumed.

Orbits under (-1/r) potential : Kepler Motion

• Lagrangian:

$$L = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) + V(r), \quad V(r) = -\frac{e V_s r_s}{r}$$
(1)

• Eq of Motion:

$$\ddot{r} = \frac{m^2}{l^2} \frac{1}{r^3} - \frac{eV_s r_s}{m} \frac{1}{r^2},$$
(2)

constant : $l = mr^2 \dot{\theta}$: angular momentum.

General Solution (Eliptic curve) :

$$r = \frac{r_{\rm c}}{1 + \varepsilon \cos(\theta + \alpha)}.$$
 (3)

 ϵ : eccentricity, α : phase, r_c : radius of circlar-motion

$$r_{\rm c} = \frac{l^2}{eV_s r_s m}.$$
 (4)

 A positive parameter depending on initial condition (initial position r₁, projection angle β₁, velocity v₁)
 is introduced:

$$Q := \frac{\frac{1}{2}m v_1^2}{-V(r_1)}$$
 (5)

When Q < 1, the orbit closes.

Q and β determin the motion :

$$\frac{r_c}{r_1} = 2Q\cos^2\beta_1, \tag{6}$$

$$\varepsilon = \sqrt{1 + 4(Q - 1)Q\cos^2\beta_1}$$
(7)

$$\alpha = \arg \left[\sin\beta_1 \cos\beta_1 + i \left(\cos^2\beta_1 - \frac{1}{2Q} \right) \right]$$
(8)

Orbits for projection angles β_1

Orbits for several Q

Impact point on counter side of fan

- By the motion from projection-point $(\theta_1 = 0)$ to impact-point $(\theta_2 = \Theta)$, radius changes as $r_1 \rightarrow r_2 = R \times r_1$, where *R* is mag/shrinking ratio.
- When distribution of projection-angle is fixed, the point splitting function (PSP) is obtained.

Distribution of Impact Points depending on Fan-angle

PSF is analytically derived for uniform-angle projection

$$\begin{split} n(R)^2 &= \left[+2R(\cos\Theta - R) \left\{ +\sqrt{1 + \cos\Theta}(-Q + R + \cos\Theta(Q - 1)R) + \sqrt{2Q/R + \cos\Theta * (Q - 1)^2 + (Q - 1)(Q + 1)}(\cos\Theta * R - 1) \right\} \right] \\ &+ \sqrt{2Q/R + \cos\Theta * (Q - 1)^2 + (Q - 1)(Q + 1)} (\cos\Theta * R - 1) + \left\{ -2*(\cos\Theta - 1)*R + Q(2\cos\Theta R - 1) \right\} \sqrt{(1 + \cos\Theta)} + \left\{ +((\cos\Theta - 1) + (\cos\Theta + 1)Q^2)(2\cos\Theta R - 1) + Q(-1/R + 5\cos\Theta - 4\cos\Theta^2 R) \right\} \\ &+ \sqrt{2Q/R + \cos\Theta - 4\cos\Theta^2 R} \\ &+ \sqrt{2Q/R + \cos\Theta - 4\cos\Theta^2 R} \\ &- R^2 \left\{ +\sqrt{1 + \cos\Theta}(-Q + R + \cos\Theta(Q - 1)R) + \sqrt{2Q/R + \cos\Theta(Q - 1)^2 + (Q - 1)(Q + 1)}(\cos\Theta R - 1) \right\}^2 \right]^{-2} \times \frac{1}{\pi} \end{split}$$

(9)

• PSF (n(R)) depending on fan-angle Θ :

FIG: $Q = 0.2, \Theta/\pi = 0.001, 0.01, 0.1, 0.2, 0.3, \dots, 1.0$

• When $\Theta = \pi$, PSF becomes simple form :

$$n(R,Q) = \begin{cases} \frac{1}{\pi} \left[(1+R)\sqrt{(1-Q)R(R_{\text{sing}}-R)} \right]^{-1} & (R \le R_{\text{sing}}) \\ 0 & (R > R_{\text{sing}}) \end{cases}$$

$$R_{\text{sing}} = Q/(1-Q)$$

Average and deviation of mag-rate R

is defined by giving distribution of projection-angle $\rho(\beta)$:

$$\langle R \rangle := \int_{-\pi/2}^{\pi/2} d\beta \rho(\beta) R(Q,\Theta,\beta),$$
 (10)

$$R^{2} := \int_{-\pi/2}^{\pi/2} d\beta \rho(\beta) R^{2}(Q,\Theta,\beta), \qquad (11)$$

$$\sigma^2 := R^2 - \langle R \rangle^2.$$
⁽¹²⁾

Here we will assume uniform distribution: $\rho(\beta) \sim \text{constant}$

Average of Mag-rate R

$$\langle R \rangle = \cos \Theta + (Q + (Q - 1) \cos \Theta) \sqrt{\frac{\cos \Theta - 1}{Q^2 - 1 + (Q - 1)^2 \cos \Theta}},$$

When $\langle R \rangle \leq 1$, $\langle R \rangle$ is minimized at $\Theta = \pi$.

Variance of mag-rate R

$$\langle R^2 \rangle = \cos 2\Theta + Q^2 \frac{-2Q\cos\Theta + \frac{1}{2}(3 + \cos 2\Theta)}{(-Q^2 + q^2)^{3/2}} - \frac{q\cos(2\Theta)}{(-Q^2 + q^2)^{1/2}}$$

(New parameter: $q := 1 + (Q - 1)\cos\Theta$.)

 σ^2 is also minimize when $\Theta = \pi$, except for $Q \sim 0$

Optimized fan/cone-angle

Theorem1: For 2-dim, the fan-angle is optimized by $\Theta = \pi$. Theorem2: For 3-dim, the cone-angle is optimized by $\Theta = \pi$. Disk Shape

Shape of muon collector is optimized by disk-form rather than cone.

Ave. and Variance of Mag-rate of Disk Collector

$$\langle R \rangle = (1-Q)^{-1/2} - 1,$$
 (13)

$$\sqrt{\sigma^2} = \langle R \rangle \times \frac{1}{\sqrt{2}} (1 - Q)^{-1/4}.$$
 (14)

Multistep cooling by Muon Collector

- Initial distribution $\eta_0(r)$ is given by accelerator
- By re-emission of muon by μ CF reaction, the distribution is developed as a generation:

 $\eta_0 \rightarrow \eta_1 \rightarrow \eta_2 \rightarrow \eta_3 \rightarrow \cdots \rightarrow \eta_n \rightarrow \cdots$.

• Relation of generation : $\eta_{n+1}(r) = \int_{0}^{\infty} d\tilde{r} K(r, \tilde{r}) \times \eta_{n}(\tilde{r}),$ (15)

The integral-kernel depending on position *r* is derived from the PSP:

$$K(r,\tilde{r}) := \frac{1}{\tilde{r}} n\left[\frac{1}{\tilde{r}}, Q(\tilde{r})\right].$$
(16)

Evolution of the Generation

Gauss distribution $\sigma = 1/2$, $Q(\sigma) = 1$ is assumed as initial input.

Mag-Rate: Applying Volt. vs re-emission Energy

Re-emission energy \sim 2 keV

EV-ratio = Re-emission energy / Applying Voltage

	Generation of µCF Reactions					
EV-ratio	0	1	2	3	4	
10%	1	0.12	1.4×10^{-3}	$2.0 imes 10^{-7}$	$4.0 imes 10^{-15}$	
50%	1	0.41	5.1×10 ⁻²	$6.6 imes 10^{-4}$	1.1×10 ⁻⁷	
60%	1	0.58	$1.4 imes 10^{-1}$	6.2×10 ⁻³	1.1×10 ⁻⁵	
70%	1	0.83	$4.5 imes 10^{-1}$	9.2 × 10 ⁻²	3.1×10 ⁻³	
75%	1	1	1	1	1	

- We have assumed ideal potential V(r) = C/r.
- Mag rate becomes 1/1000 by applying 10kV with 4 \sim 5 μ CF generation.
- Possible generation is up to 10. (1-time makes 15% loss, 4-times make 50% loss)

Rate of the re-emission after slow muon impacts (Okutsu)

A: Re-emission rate from D or T

B:

С

- Posibility of releasing to front side
- (1-B): Posibility of recapturing by D or T

$$A_{DD}=0.16, A_{DT}=0.98,$$

 $\sim 0.1,$
 ~ 0.9
(Calculated by inpact E=8V, project E=3keV)

Sum of releasing probability by multiple μ CF reaction :

DD-reaction:2.0%...**DT-reaction**:85.3%...Almost same result by Montecarlo Calculation.

 μ CF generation is only 1-time. μ CF generations can be 10-times.
Design of Tritium Handing

collaborating with Toyama U.

Glove-box

Designed by Hatano, Hara (Toyama U.), and Natori (KEK).

Beam Focusing by Aberration Corrector

There is ∆ E ~ 1 keV even for beam-cooling.
Chromatic aberration of conversion-lens blurs the focal point.

Chromatic aberration corrector solves the problem.

Hosokawa Corrector

The other Applications of the Focused μ⁻

• Generation of True Muonium $\mu^+ \mu^-$ and spectroscopy

Beam source for Muon Collider (μ⁺→←μ⁻)
Soft-error evaluator for IC/LSI by focused μ⁻