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• High intensity π beamline at target E

− cloud µ– from π– decay

− Typical µ– momenta: 15-60 MeV/c

• Momentum acceptance

− selectable via FSH52 slit pair

− Δp/p ≈ 1 – 8 % FWHM

• Rates from 103 up to 105 µ–/s on target

− close to ideal sampling rate (CW beam!)

− For the “average” sample, we collect 

enough statistics within ~1 hour

• All past MIXE campaigns hosted at πE1.2

− non-permanent installation

− approx. 3 weeks beam time per yearFSH52
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• High intensity µ beamline at target E

− (cold-bore) superconducting decay solenoid

− Tunable momentum acceptance

− Muon momentum ≳ 60 MeV

• Beamline supports dual configuration

− U configuration – GPD µSR instrument

− Z configuration – space for GIANT/MIXE

• permanent installation feasible

− potential for significant beamtime increase

• Preliminary beam simulations very promising

• Low momenta require warm-bore magnet

− represents quite significant investment

− would introduce new capabilities for studies 

much closer to surface

see poster

by C. Chen
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• Tagging Detector (developed for muX experiment)

− reduces uncorrelated BKG

− allows for discrimination of nuclear capture events

− BC-400 plastic scintillators (Counter and Veto)

− SiPM readout using custom electronics
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10 µm Ti

Ø 18mm

active Veto

200 µm

µ-counter

µ-

• Tagging Detector (developed for muX experiment)

− reduces uncorrelated BKG

− allows for discrimination of nuclear capture events

− BC-400 plastic scintillators (Counter and Veto)

− SiPM readout using custom electronics

• Beam Port

− 10µm titanium foil window

− beam extraction to sample in air

− approx. 10 cm distance

− system of collimators available 

for sample spot measurements
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• (Nearly) complete setup

− 8 freely rotating arms (currently 5)

− 4 BigMac HPGe per arm

− up to 30 HPGe detectors

− currently ~12 detectors

− shared between multiple experiments

• Reproducible positions and angles

• Setup time approximately 6 hours

• Supervised semi-automatic LN2 refill

− fully automatic system in preparation

• Sample station twin in control room

− Mounting & Alignment “prefab”

− Roughly 5 min sample change
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• MIDAS DAQ system

− ingests and stores VME digitzer data

− online preanalysis allows status monitoring

− includes slow control (LN2, beam monitoring, etc.) 

• Digitizer: Struck SIS3316-250-14 VME

− 16 channel with 2V/5V dynamic range

− 250 MS/s, 14-bit, 128 MS/ch

− trapezoidal filter with tau correction implemented on FPGA

− fast optical readout

− (partial) waveform readout for original and filtered waveforms

− we usually store ~400 samples (~1.4µs per event)

− allows for improved offline baseline correction

− multiple devices chainable (external clock available)

The GIANT Setup – DAQ
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New Developments: 
Towards MIXE Tomography
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Novel technique: Non-destructive
element (isotope) sensitive tomography!
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a) Vincent van Gogh's Flower Still Life with Meadow Flowers and Roses, 
summer 1886 (Kröller–Müller Museum, Otterlo, the Netherlands), rotated for 
illustration purposes. 

b) Hg fluorescence signal of the area in the red box, flowers are visible. 

c) Zn fluorescence signal of the same area, hints of a human face visible.

d) Zn fluorescence measured from the back of the painting with less 
absorption, revealing the human face as part of an overpainted wrestling 
scene.. 

M. Alfeld and J. A. C. Broekaert, Spectrochimica Acta Part B 88, 211- 230 (2013)
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• Opportunity to work with existing prototype detector

− Collaboration with F. Garcia (U Helsinki) & RD51, CERN

− Designed for heavy ion tracking @ GSI/FAIR
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• Opportunity to work with existing prototype detector

− Collaboration with F. Garcia (U Helsinki) & RD51, CERN

− Designed for heavy ion tracking @ GSI/FAIR

• Twin Time-Projection-Chamber

− GEM stack amplification stage

− 1D strip readout – 1024 in total

− X position given by cluster on strips

− Y position by drift time(s)

− Tested with Ar/CO2 and P10 (Ar/CH4)

• Separate readout system

− based on SRS DAQ with VMM3a ASICs

− extreme rate capability (not required for MIXE)

− continuous readout 

− challenging synchronization with MIXE DAQ 
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Entrance Detector
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Entrance Detector
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Entrance Detector

First TPC (top)

Second TPC (bottom)

MICROMEGAS

Telescope



• Assembled, tested and mounted new detector

− precision 3D printed (35um) mounting structure

− 3 scintillating fibers in exactly 4mm distance

− high speed SiPM premounted on readout board

Drift time calibration – Fiber Detector
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• Assembled, tested and mounted new detector

− precision 3D printed (35um) mounting structure

− 3 scintillating fibers in exactly 4mm distance

− high speed SiPM premounted on readout board

• Drift time calibration successful!

− cut on parallel tracks (constant sum of drift time)

− drift velocity: (9.30 +/- 0.03) mm/us

Drift time calibration – Fiber Detector
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Finally: Taking data with tracking @ MIXE!
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• Added single HPGe (el. cooled)



Finally: Taking data with tracking @ MIXE!

Page 57

• Added single HPGe (el. cooled)

• Produced target with 4 materials

− Stainless: Fe (66%), Cr (18%), Ni (12%)

− Brass: Cu (63%), Zn (37%)
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− Copper (ETP): Cu (100%)



Finally: Taking data with tracking @ MIXE!

Page 58

• Added single HPGe (el. cooled)

• Produced target with 4 materials

− Stainless: Fe (66%), Cr (18%), Ni (12%)

− Brass: Cu (63%), Zn (37%)

− Anticorodal: Al (97%)

− Copper (ETP): Cu (100%)

• Thicknesses chosen to stop close 

to surface (from simulations)



Finally: Taking data with tracking @ MIXE!

Page 59

• Added single HPGe (el. cooled)

• Produced target with 4 materials

− Stainless: Fe (66%), Cr (18%), Ni (12%)

− Brass: Cu (63%), Zn (37%)

− Anticorodal: Al (97%)

− Copper (ETP): Cu (100%)

• Thicknesses chosen to stop close 

to surface (from simulations)

• Alignment by rough spectral analysis



Finally: Taking data with tracking @ MIXE!

Page 60

• Added single HPGe (el. cooled)

• Produced target with 4 materials

− Stainless: Fe (66%), Cr (18%), Ni (12%)

− Brass: Cu (63%), Zn (37%)

− Anticorodal: Al (97%)

− Copper (ETP): Cu (100%)

• Thicknesses chosen to stop close 

to surface (from simulations)

• Alignment by rough spectral analysis

• Last night of beamtime! Time for 2 runs:

− High rate: ~4 hours, approx. 20 kHz

− Low rate: ~9 hours, approx. 8 kHz

low multiplicity in tracker – simpler analysis
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• Beamspot

− track fitted through both TPCs

− extrapolated to target position

− plot shows only hits with

matching hit in HPGe
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• Beamspot

− track fitted through both TPCs

− extrapolated to target position

− plot shows only hits with

matching hit in HPGe

• Conditions not ideal

− Beam shape due to narrow slits

− beam approx. 1.5cm off-center

− Aluminum thickness not ideal

Are these boundaries

between materials?
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• Beamspot

− track fitted through both TPCs

− extrapolated to target position

− plot shows only hits with
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− beam approx. 1.5cm off-center
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• Beamspot

− track fitted through both TPCs

− extrapolated to target position

− plot shows only hits with

matching hit in HPGe

• Conditions not ideal

− Beam shape due to narrow slits

− beam approx. 1.5cm off-center

− Aluminum thickness not ideal

• Clear boundaries between materials!

− cutting 2mm around boundary

→ 4 distinct spectra w/o overlap

− combined resolution ~1.6 mm

− 5cm ArCO2, 1cm Air, 2mm metal!
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− generally not possible for each event (compton scattering, BG, etc.)
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− However: Can we assign a probability based on a reference spectrum? 

YES! Together with appropriate cutoff this allows for elemental imaging!
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CuFe

• Atom (Isotope) Identification

− generally not possible for each event (compton scattering, BG, etc.)

− However: Can we assign a probability based on a reference spectrum? 

YES! Together with appropriate cutoff this allows for elemental imaging!



• First proof-of-principle measurement successful!

− Clear ID of involved materials

− Probabilistic event-by-event material identification

− Performance as expected from simulations

− MICROMEGAS data could be used to further improve resolution

Preliminary conclusions
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• First proof-of-principle measurement successful!

− Clear ID of involved materials

− Probabilistic event-by-event material identification

− Performance as expected from simulations

− MICROMEGAS data could be used to further improve resolution

• Major step towards element (or even isotope) sensitive 3D tomography

− first experiment showing this imaging technique/capability

− momentum scans will provide depth information!

• Multiple scattering in the gas is a strongly limiting factor

− We need low density mixture, e.g. HeCO2 (90/10)! 

− Preparations underway to test with this mixture later this year 

− Development in collaboration with RD51/CERN

Preliminary conclusions
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• Improved reference target

− pure metals (except brass)

− layered to check depth resolution

− optimized total thickness

− reproducible, more stable mounting

− central alignment on beamspot

Improvements in September Beamtime
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• Improved reference target

− pure metals (except brass)

− layered to check depth resolution

− optimized total thickness

− reproducible, more stable mounting

− central alignment on beamspot

• Improved experimental setup

− Tracker flanged directly on beampipe

− factor 10 more HPGe detectors

• Depth scanning to resolve material interfaces

− 50, 52.5, 55, 57.5, 60, 65 MeV/c

• Analysis ongoing! 

Stay tuned!

Improvements in September Beamtime
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Thank you for your attention!
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Any Questions, Comments or Suggestions?



Additional Materials
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• Two separate DAQs: 

− SRS/VMM3a for Tracker

− MIDAS/VME/SIS3316 for HPGe

• Multiple signals for synchronization in both DAQs

− 1 kHz reference from signal generator

− proton current (semi-regular)

− entrance detector 

• However: multiple issues severely complicate sync!

− no common clock for ASICS → relative clock drift

− tracker DAQ (readout?) sometimes drops events 

− different chunks missing in both DAQs (when new files start)

Synchronization difficulties

Page 87

Fixed!



• Good events require the following:

− Entrance detector shows muon without veto firing

− Top and Bottom TPC each show a single cluster each within 10us window

− HPGe fires within 1us after tagging

• Rate reduction

− 8 kHz tagging rate (60 MeV/c, slits to minimum)

− ~0.2 kHz events survive selection criteria

− solid angle coverage of HPGe ~5%

− tracker efficiency ~90% without multiplicity

• Improvements possible

− require tag or matching hits in tracker with drift time sum

− allow multiple hits in tracker

Event selection criteria (low rate run)

Page 88
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