

Malte Hildebrandt :: Laboratory for Particle Physics :: Paul Scherrer Institute

Detectors used at CHRISP and SINQ – insights in different technologies

BRIDGE Workshop, PSI, 18.-20. October 2023

New DMC Detector @ SINQ

- common project FRM2/TUM (ErwiN) & PSI (DMC) (ILL left after prototype phase)
- DMC: cold neutron diffractometer for powder & single-crystal applications
- detector requirements
 - □ continuous, horizontal coverage ≥ 130°
 - vertical coverage \geq 14° (200mm)
 - $\hfill{``}$ resolution in x and y of ~0.1°
 - ^o efficiency 75% @ 1.8 Å
 - $^{\rm o}$ global rate capability ~2 MHz
 - $^{\rm o}$ time resolution ~µs
- realisation
 - ^o BNL-type, high-pressure ³He-MWPC
 - ^o 6.5 bar ³He + 1.5 bar CF₄
 - 9 wire segments
- anode wires (pitch 1.6 mm), cathode strips (pitch 1.6 mm)
 Hildebrandt

detector principle

- n + ${}^{3}\text{He} \rightarrow p + t$
- high pressure ³He-CF₄ mixture
- conversion volume
- amplification, detection (MWPC)

New POLDI Detector @ SINQ

- ongoing upgrade program PSI and CDT Ltd., Heidelberg
- POLDI: time-of-flight neutron diffractometer for strain measurements
- detector requirements
 - □ continuous, horizontal coverage ≥ 30°
 - vertical coverage $\geq \pm 3.2^{\circ}$ (200 mm)
 - horizontal resolution / channel width 2.5 mm
 - ^o efficiency 65% @ 1.2 Å
 - global rate capability ~kHz / channel
 - ${}^{\scriptscriptstyle \rm D}$ time resolution \leq 1 μs
- realisation
 - ^a ZnS/⁶LiF-based scintillator read out with WLS fibres and SiPMs
 - prototype developed at PSI in 2013-2017
 - ^o former postdoc moved to CDT Ltd.

New POLDI Detector @ SINQ

- ongoing upgrade program PSI and CDT Ltd., Heidelberg
- POLDI: time-of-flight neutron diffractometer for strain measurements
- detector requirements
 - □ continuous, horizontal coverage ≥ 30°
 - vertical coverage $\geq \pm 3.2^{\circ}$ (200 mm)
 - horizontal resolution / channel width 2.5 mm
 - efficiency 65% @ 1.2 Å
 - global rate capability ~kHz / channel
 - ${}^{\scriptscriptstyle \rm D}$ time resolution \leq 1 μs
- realisation
 - ^a ZnS/⁶LiF-based scintillator read out with WLS fibres and SiPMs
 - prototype developed at PSI in 2013-2017
 - ^o former postdoc moved to CDT Ltd.

first ZnS detector for neutron scattering @ PSI
first SiPM in neutron scattering instrumentation worldwide

ZnS/⁶LiF-based thermal Neutron Detector @ PSI

detection principle

 $^{\rm \tiny n} {\rm \ n} + {\rm ^6Li} \rightarrow {\rm t} + \alpha$

- scintillation light from ZnS
- ND2:1 Scintillation screen (Scintacor)
 - $^{\rm o}$ non-transparent, 0.25 mm and 0.45 mm thickness
 - grooves machined in 0.45 mm screen
- WLS fibres Kuraray Y11(499)M
 - ${}^{_{\rm D}}$ \varnothing = 0.25 mm, embedded in grooves of scintillator
- Eljen EJ-500 optical epoxy
- detection unit
 - If front end: fibres polished and mirrored
 - " rear end: 12 fibres bundled and coupled to SiPM
- detection unit with 4 layers

 $_{\text{\tiny B}}$ ϵ_{abs} > 80% @ 1.2 Å , intrinsic time resolution < 1 μs $_{\text{Hildebrandt}}$

Bridge Workshop, PSI, 18.10.2023, 13

Manufacturing Prototype @ PSI

Manufacturing Prototype @ PSI

Hildebrandt

ZnS/⁶LiF-based thermal Neutron Detector @ PSI

PAUL SCHERRER INSTITUT

ZnS/⁶LiF-based thermal Neutron Detector @ PSI

ZnS/⁶LiF-based thermal Neutron Detector @ PSI

- achieved detector performance
 - 1D, gapless, individual pixel readout
 - individual long pixels (2.5 mm, 200 mm)
 - detection efficiency at 1 Å 60 %
 absorption probability 75 %
 trigger efficiency 80 %
 - background count rate $\leq 10^{-3}$ Hz
 - gamma-sensitivity (⁶⁰Co) ≤ 10⁻⁷
 - multi-count ratio $\leq 10^{-3}$
 - dead time $\approx 6 \ \mu s$
 - max. neutron count rate ≈ 50 kHz
- system design
 - scalable detector design
 - FPGA-based, scalable readout electronics

Full-Size Module Production @ CDT

Full-Size Module Production @ CDT

Full-Size Module Production @ CDT

MEG II Experiment @ PSI

- search for cLFV decay $\mu \rightarrow e + \gamma$
- located at CHRISP facility @ Paul Scherrer Institute
 - p-cyclotron: 590 MeV, 2.4 mA
 - π E5: most intense DC low-momentum μ -beam with $O(10^8 \mu/s)$
- dedicated detector design
 - to measure the observables characterising
 - the $\mu^{*} \rightarrow e^{*} \gamma$ event: E_{γ}, E_e, t_{e γ}, $\vartheta_{e\gamma}$, $\phi_{e\gamma}$
 - to reject background

MEG II Experiment @ PSI

- search for cLFV decay $\mu \rightarrow e + \gamma$
- located at CHRISP facility @ Paul Scherrer Institute
 - ^D p-cyclotron: 590 MeV, 2.4 mA
 - $^{\rm o}$ $\pi E5:$ most intense DC low-momentum $\mu\text{-beam}$ with $\textit{O}(10^8~\mu/s)$
- dedicated detector design
 - to measure the observables characterising
 - the $\mu^{\prime} \rightarrow e^{\prime} \gamma$ event: E_{γ}, E_e, t_{e γ}, $\vartheta_{e\gamma}$, $\varphi_{e\gamma}$
 - to reject background
- MEG: analysis of full data sample 2009-2013 BR $(\mu^{+} \rightarrow e^{+} \gamma) < 4.2 \cdot 10^{-13}$ (90% CL)
- MEG II: analysis of data sample 2021
 → talk by Toshi Mori, Friday 09:00

Cylindrical Drift Chamber @ MEG II

- designed to measure 52.8 MeV e⁺ (achieved $\sigma_{E} \approx$ 90 keV)
 - single volume detector
 - high transparency towards Timing Counter
 - low multiple scattering contribution $1.58 \cdot 10^{-3} X_0$ along e⁺ track
 - operated in B-field, 0.5 1.26 T
- mechanics
 - length = 200 cm, \varnothing = outer = 60 cm
 - $^\circ$ sensitive region 17 cm < r_{sensitive} < 29 cm corresponding to the bending radius of 52.8 MeV/c e^+ in magnet
 - carbon fibre support structure (1.8mm thick) consisting of two half shelfs
 - endplates with stacked PCBs and PEEK spacers
 - $^{\rm o}$ thin aluminized Mylar foil to separate sensitive volume with wires and inner part with μ beam and stopping target

Bridge Workshop, PSI, 18.10.2023, 25

Cylindrical Drift Chamber @ MEG II

- wiring
 - stereo-angle geometry (6.0° to 8.5°)
 - ightarrow hyperboloid volume
 - 9 concentric drift cell layers, 2 guard wire layers
 - (approximately) squared drift cell size
 - $\pm z_{max}$: 6.7 mm (inner) 8.7 mm (outer)
 - z = 0: 5.8 mm (inner) 7.5 mm (outer)
 - $^{\rm o}$ 20 μm gold-plated W wires
 - $40\,\mu m$, $50\,\mu m$ silver-plated Al wires
 - \rightarrow 1728 + 9408 + 768 = 11 902 wires with 272 kg
- readout
 - stereo angle geometry
 - high rate environment: >1 MHz per cell (innermost layer)
 - double-sided readout for charge division and signal time propagation difference (DRS4)
- in operation since 2019

Filling Gas and Cluster Counting Technique

He/iC₄H₁₀ (90/10), admixture of 0.5 % O₂, 1.5 % isopropyl alcohol

-0,6

- $_{\rm o}$ ~13 e⁻/cm (n_p dominated by w_{\rm He} = 41 eV) \rightarrow large spacing between individual clusters
- "traditional" procedure
 high and dense primary ionisation
- cluster counting technique
 - increased number of supporting points along particle trajectory
 - improved track fitting accuracy and momentum determination

Filling Gas and Cluster Counting Technique

- He/iC₄H₁₀ (90/10), admixture of 0.5 % O₂, 1.5 % isopropyl alcohol
 - $_{\rm o}$ ~13 e⁻/cm (n_p dominated by w_{\rm He} = 41 eV) \rightarrow large spacing between individual clusters
- "traditional" procedure
 high and dense primary ionisation
- cluster counting technique
 - increased number of supporting points along particle trajectory
 - improved track fitting accuracy and momentum determination
- performance (resolution σ)
 - energy ~90 keV (@52.8 MeV)
 - $^{\rm o}$ angular ~~ ~7.4 mrad in $\theta,$ ~4.1 mrad in ϕ

- trigger: need of fast timing detectors in μSR technique
- 2012: NIM A 695 (2012) 202-205
 - scintillator BC422 (3×3×2) mm³
 - ^a SiPM Hamamatsu MPPC S10362-33-050, (3×3) mm²
 - constant fraction discriminator

 $\rightarrow \sigma_{\text{timing}} = \sigma_{1\text{MeV}} / \text{E}^{0.5}$ with $\sigma_{1\text{MeV}} = 18 \text{ ps} \cdot \text{MeV}^{0.5}$

- trigger: need of fast timing detectors in μSR technique
- 2012: NIM A 695 (2012) 202-205
 - $^{\rm u}$ scintillator BC422 (3×3×2) mm^3
 - $^{\rm o}$ SiPM Hamamatsu MPPC S10362-33-050, (3×3) $\rm mm^2$
 - constant fraction discriminator

 $\rightarrow \sigma_{\text{timing}}$ = $\sigma_{1\text{MeV}}$ / E^{0.5} with $\sigma_{1\text{MeV}}$ = 18 ps \cdot MeV^{0.5}

- 2021: IEEE TNS 68, 7 (2021) 1487-1494
 - scintillator BC422 (3×3×3) mm³, EJ-232 (3×3×3) mm³
 - $^\circ$ SiPM Hamamatsu , Advansid, Ketek, all (3×3) mm², Broadcom (3.72×3.72) mm²
 - onstant fraction discriminator
 - ightarrow BC422 & Broadcom SiPM: σ_{1MeV} = 6.4 ps \cdot MeV $^{0.5}$

fast timing μ, e detectors in μSR instrumentation

fast timing μ, e detectors in μSR instrumentation

• fast timing π , μ , e detectors in MUSE experiment

pixelated Timing Counter @ MEG II

- designed to measure timing of 52.8 MeV e⁺ (σ_t < 100 ps)
 - $^{\rm o}$ 2× 256 plastic scintillator tiles, (120×40/50×5) mm^3
- scintillator tile
 - scintillator BC422
 - ^a SiPM AdvanSiD (ASD-NUV-SiPM3S-P) (3×3) mm²
 - each side 6 SiPMs in series
 - wrapped with polymeric reflector foil (VIKUITI 3M Mirror Foil)
 black TEDLAR foil
- performance

 σ_t < 40 ps

Plastic Scintillator Detectors with WLS Fibre

- embedded WLS fibres for light collection and guiding
- SiPM outside irradiated region, vacuum, etc.
- large area read out by single SiPM

Plastic Scintillator Detectors with WLS Fibre

- embedded WLS fibres for light collection and guiding
- SiPM outside irradiated region, vacuum, etc.
- large area read out by single SiPM

Scintillating Fiber Beam Profile Monitor

- main features
 - real-time measurement of profile and rate
 - 2D reconstruction
 - quasi non-invasive
 - particle ID
 - high rate capability
 - working in magnetic fields
- detector
 - $^{\rm o}$ Saint-Gobain BC12 , double cladding, square, 500 μm
 - 21 fibres/layer
 - ^o fibre pitch 5 mm,
 - Bamamatsu MPPC S13360-1350CS
 - oduble-sided readout, 84 channels
 - DAQ and TRG with WaveDREAM board
- prototype
 - ^a fix mounted in beam line element, operated in air

Scintillating Fiber Beam Profile Monitor

- main features
 - real-time measurement of profile and rate
 - 2D reconstruction
 - quasi non-invasive
 - particle ID
 - high rate capability
 - working in magnetic fields
- detector
 - $^{\rm o}$ Saint-Gobain BC12 , double cladding, square, 500 μm
 - 21 fibres/layer
 - fibre pitch 5 mm,
 - Bamamatsu MPPC S13360-1350CS
 - odouble-sided readout, 84 channels
 - DAQ and TRG with WaveDREAM board
- planned final version
 - In vacuum and movable

Hildebrandt

Wir schaffen Wissen – heute für morgen

Wir schaffen Wissen – heute für morgen

Bridge Workshop, PSI, 18.10.2023, 41

Charged Particles

- energy loss dE/dx while passing through matter
- gaseous detector
 - volume filled with 'counting gas'
 - deposited energy used to ionise the gas atoms/molecules
 - ^a applied electric field collects the primary ionisation
 - different operation modes, depending on applied voltage, anode geometry, electron amplification, etc.
 - readout with charge-sensitive pre-amplifier

Plateau Relative ionizatior Relativistic rise Minimum 10 100 1000 βγ filling gas + HV - 0.4 - 0.4 - 0.2 - 0.2 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.5 0.4 0.2 -0.2

• deposited energy used to excite or ionise luminescence centres

-0.4

-0.8

- 'scintillation light' emitted due to return to ground state
- Ight collection (light guides, WLS)
- ^a opto-electrical conversion with PMT, SiPM

neutron absorption

gaseous converter:

- n + ³He \rightarrow p⁺ (0.573 MeV) + t⁺ (0.191 MeV)
- n + BF₃ safety issues (toxic, corrosive) limitations in gaseous electronics (p < 2 bar)

solid converter:

- n + ⁶Li \rightarrow t (2.73 MeV) + α (2.05 MeV)
- n + ¹⁰B $\rightarrow \alpha$ (1.47 MeV) + ⁷Li (0.83 MeV) + γ (0.477 MeV)
- n + ¹⁰B $\rightarrow \alpha$ (1.78 MeV) + ⁷Li (1.01 MeV)
- $n + {}^{157}Gd \rightarrow {}^{158}Gd + e^{-} (0.07 0.182 \text{ MeV}) (85-90 e^{-}/n)$

Neutron Scattering Principles

requirements for detector

- 1D / 2D position-sensitive ~mm
- large area coverage
- high efficiency
- timing resolution ~µs
- count rate several (tens) kHz/channel

ZnS:Ag/⁶LiF Scintillator

PAUL SCHERRER INSTITUT ZnS:Ag/⁶LiF scintillator^{*}

```
* e.g. Scintacor, scintillation screen ND 2:1
```

- neutron absorption: ${}^{6}\text{Li} + {}^{1}\text{n} \rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4.79 \text{ MeV}$, $\sigma = 940\cdot\lambda / 1.8 \text{ barn} ([\lambda] = \text{Å})$
- high light yield: 160 000 photon / neutron

• non-transparent: collected light is \circ limited \rightarrow small number of detected photons • non-uniform \rightarrow large dynamic range of signals

Iong emission time:

requirements:

high light yield high transparency

- 25% photons within 1 μs
- 60% photons within 10 μs
- \rightarrow artificial dead time needs to be implemented in signal processing to avoid multiple triggers

Hildebrandt

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 32

- based on analysis of temporal distribution of single-cell SiPM signals
 - → neutron event detected as an increase of the density of single-cell SiPM signals

- blocking times can be shorter than emission time of scintillator
- scalable

G-Amp : Gaussian amplifier (shaping time $sh-time = 0.25 \mu s$)

Discr SDi: leading-edge discriminator (threshold thrSDi)

Gen : non-retriggerable monoflop (pulse width b-time = 4 \cdot sh-time)

CoG Methode – Electrons vs Photons

$$\bar{x} = \frac{\sum x_k Q_k}{\sum Q_k}$$

 Q_k = charge in channel x_k

$$\bar{x} = \frac{\sum x_k N_k}{\sum N_k}$$

Measured vs. true position

trigger: need of fast timing e⁺ detector in μSR technique

5

Drift Chamber System @ MEG (2009-13)

- designed to measure 52.8 MeV e⁺ (achieved $\sigma_{E} \approx 330 \text{ keV}$)
 - I6 individual drift chamber modules
 - aligned radially in half circle, 10.5° intervals
 - Iow multiple scattering contribution
 - 2.6 \cdot 10⁻⁴ X₀ per module
 - 2.0·10⁻³ X_0 along e⁺ track
 - filling gas He/C₂H₆ (50/50)
 - operated in Helium atmosphere
 - operated in B-field, 0.5 1.26 T
- mechanics
 - Im long, V-shaped / open trapezoidal geometry
 - carbon fibre frames
 - two (staggered) detector planes per module to resolve ambiguities
 - carbon fibre support structure (DC modules, HV/LV cables, gas tubes, etc.)

Bridge Workshop, PSI, 18.10.2023, 49

Drift Chamber System @ MEG (2009-13)

wiring

- $^{\rm o}$ 25 μm Ni80/Cr20 wires (2.2 kΩ/m)
- $^{\rm o}$ 50 μm Cu98/Be2 wires
- ^o length 40 830 mm
- cathode
 - ${\scriptstyle \tt P}$ 12.5 μm polyamide foil
 - ~250 nm sputtered aluminum coating
 - Vernier pattern (λ = 5 cm)
- readout
 - $^{\rm o}$ double-sided anode wire readout for charge division (DRS): $\sigma_{\rm anode}$ ~cm,
 - $^{\rm o}$ four cathode strips per anode: $\sigma_{\rm cathode}$ < 1mm
 - high rate environment: 30 kHz/cm²

Drift Chamber System @ MEG (2009-13)

- operation
 - initial problems (2007/08) with HV stability due to
 - sealing of HV connections in outer Helium atmosphere and
 - «helium pocket»
 - anode aging as expected
- performance (resolution σ)
 - energy ~330 keV (@52.8 MeV)
 - $\,^{\rm o}$ angular $\,$ ~8.5 mrad in θ , ~7.7 mrad in ϕ

