TOSHINORI MORI THE MEG II COLLABORATION THE FIRST RESULT OF MEG II ON SEARCH FOR $\mu^+ \rightarrow e^+ \gamma$

WHY ARE WE SEARCHING FOR $\mu^+ \rightarrow e^+ \gamma$?

WHY ARE WE SEARCHING FOR $\mu^+ \rightarrow e^+ \gamma$?

Because it violates flavor conservation in charged leptons and is prohibited by the standard model.

WHY ARE WE SEARCHING FOR $\mu^+ \rightarrow e^+ \gamma$?

Because it violates flavor conservation in charged leptons and is prohibited by the standard model.

Really?

 $\pi n \rightarrow \mu$

We do not really observe neutrinos in these reactions.

LEPTON FLAVORS ARE DEFINITELY VIOLATED IN CHARGED LEPTONS!

 $\mu \rightarrow e\gamma$ should occur!

$\mu^+ \rightarrow e^+ \gamma$ Should naturally occur !

$\mu^+ \rightarrow e^+ \gamma$ Should naturally occur !

ANY TEV SCALE PHYSICS HELP MAKE THE BRANCHING RATIO BIGGER !

electron neutrino

muon neutrino

Grand Unification

top

bottom

tau

Grand Unification

top

bottom

tau

top

Grand

BIG PICTURE

grand unification charge quantization

Flavor violation from quark Yukawa

GUT

Leptogenesis

seesaw mechanism neutrino masses

Flavor violation from neutrino Yukawa

TeV scale physics Dark Matter

SUSY

 $\simeq 10^{-12}$

BIG PICTURE

grand unification charge quantization

Flavor violation from quark Yukawa

POSSIBLE HINTS

muon g-2 lepton universality in B decays

GUT

Leptogenesis

seesaw mechanism neutrino masses

Flavor violation from neutrino Yukawa

TeV scale physics Dark Matter

SUSY

 $\simeq 10^{-12}$

WHY $\mu \rightarrow e\gamma$?

THE CURRENT STATUS: $\mu \rightarrow e\gamma$

the smallest measured branching ratio for an elementary particle

10⁻¹ 10⁻² **10**⁻³ 10⁻⁴ **10**⁻⁵ **10**⁻⁶ -7 10 Branching ratio upper limit -8 10 _-9 10 **10**⁻¹⁰ 10⁻¹¹ **10**⁻¹² **10**⁻¹³ **10**⁻¹⁴ **10**⁻¹⁵ 1940

$\mu^+ \rightarrow e^+ \gamma$ SEARCH REQUIRES <u>LOTS OF MUONS</u>

(1) If you want to find something at $<10^{-13}$, you need to observe at least >10¹³ muons.

NANT BACKGROUND IS ACCIDENTAL

Shown are effective branching ratios for $(E_{\gamma}, E_e) > (E_{\gamma,min}, E_{e,min})$

Accidental Background is dominant if you have good detectors

SUPPRESSING ACCIDENTAL BACKGROUND

(2) must manage high rate e⁺

11

THREE STRATEGIES FOR MEG / MEG |

1. High intensity (~10⁸/sec) DC muon beam

Paul Scherrer Institute's 1.4MW Ring Cyclotron

2. e⁺ spectrometer that can manage high rate

Gradient Magnetic Field Spectrometer (COBRA)

- 3. High resolution gamma-ray detector
 - Liquid Xenon Scintillation Detector

HOW TO F

G (1) PS

THE UNIQUE FACILITY FOR $\mu \to e \gamma$ SEARCH

Provides world's most powerful DC muon beam > 10⁸/sec

(2) COBRA POSITRON SPECTROMETER

Thin-wall SC solenoid with a gradient magnetic field:
1.27T center - 0.49T both ends

Gradient B field helps to manage high rate e⁺

compensation coils

COBRA

"COBRA Concept" to manage high rate positrons

Low energy positrons quickly swept out

COBRA = "COnstant Bending RAdius"

Constant bending radius independent of emission angles

(3) 2.7TON LIQUID XENON PHOTON DETECTOR (LXE)

Scintillation light from 900 liter LXe is detected by SiPM & PMTs mounted on all surfaces

Fast response & high light yield provide good resolutions of energy, time, & position

Gas/liquid circulation system to purify xenon

Ultimate uniformity & purity unachieval crystal calorimeter

MEG II DETECTOR MEG II DETECTOR MEG II – UPGRADE OF MEG

Thin-wall SC solenoid (gradient B-filed: 1.3→0.5 T)

higher intensity higher resolution higher efficiency

Search for μ+ → e+γ down to 6×10⁻¹⁴ (90% C.L. sensitivity)

> Radiative decay counter (identify high-energy BG γ events)

17

MEG II DETECTOR MEGII – UPGRADE OF MEG

Thin-wall SC solenoid (gradient B-filed: $1.3 \rightarrow 0.5 \text{ T}$)

higher intensity higher resolution higher efficiency

Search for $\mu^+ \rightarrow e^+\gamma$ down to 6×10⁻¹⁴ (90% C.L. sensitivity)

> Radiative decay counter (identify high-energy BG γ events)

Liquid xenon photon detector (ε_v~62%, σ_E/E~2%)

e⁺ hits the Timing Counter after making 1.5 - 2.5 turns in the Drift Chamber

(5×10⁷ S⁻¹)

Pixelated timing counter $(\sigma_t \simeq 40 \text{ ps})$

Muon stopping target (170 µm-thick scintillating film)

Cylindrical drift chamber $(\sim 1.6 \times 10^{-3} X_0, \sigma_p \sim 100 \text{ keV})$

U.

π E5 BEAMLINE

MUON STOPPING TARGET

- Displacement/deformation of target should be < 0.5mm</p>
 - Dominant systematic error (5% in BR) of MEG
 - Six holes systematic checks by e⁺ tracking
 - NEW: photogrammetric survey by two cameras
 - good within 100µm normal to the target plane

Nucl. Instrum. Methods A 944, 162511 (2019); Rev. Sci. Instrum. 92(4), 043707 (2021)

174µm thick (cf. MEG 205µm), 66mm height, 15° slanted, carbon fibre frame

MUON STOPPING TARGET

- 174µm thick (cf. MEG
- Displacement/deform
 - Dominant systemati
 - Six holes systemat
 - NEW: photogramm
 - good within 100µ

Nucl. Instrum. Methods A 944, 162511 (2019); Rev. Sci. Instrum. 92(4), 043707 (2021)

MEG II DETECTOR

CYLINDRICAL DRIFT CHAMBER (CDCH)

arXiv:2310.12865

CYLINDRICAL DRIFT CHAMBER (CDCH)

- Low material: $1.58 \times 10^{-3} X_0$ /e⁺-turn (cf. $2.0 \times 10^{-3} X_0$ for MEG)
 - He-Isobutane (90:10) with oxygen 0.5% + isopropyl alcohol 1.5%
 - Radius of 17 29cm, 1.93m long
 - 9 layers of drift cells of 6 9mmø with stereo angles of 6.0 8.5°

 - Ag-plated Al cathode/guard wires (40µm)
 - innermost cells at > 1MHz for $5 \times 10^7 \mu$ /sec, max occupancy ~25%
 - ~110µm position resolution

to avoid corona discharge & current spikes

1,728 Au-plated W anode wires (20µm), of which 1,200 within acceptance are readout

Earlier corrosions problems solved by maintaining dry atmosphere

CDCH - HIT DETECTION

- Convolutional Neural Network to help identify
 - Remove coherent noise
 - Obtain first cluster arrival time
 - Tracking efficiency improved by 26%

measured DOCA (standard approach)

ALIGNMENTS

- CDCH wire alignment by Michel positrons
 - 22 25µm survey errors $< 5 \mu m$
- CDCH Magnetic Field Map
 - Non-uniform field could affect E_{ρ^+} measurement
- CDCH Target
 - Target hole reconstruction 100µm uncertainty
- CDCH LXe photon detector ≤ 1 mm
 - Cosmic-rays penetrating both CDCH & LXe

 $\delta_{E_a} < 10 \text{ keV}$

Rotation < a few mrad

CDCH - PERFORMANCE

- Double-turn method for evaluation
- Michel edge evaluation
 - Improved by CNN DOCA reconstruction
 - $\sigma_{E_e^+} \approx 90 \text{ keV}$ (cf. MEG 320 keV)
 - Efficiency CDCH-pTC = $67\% @3 \times 10^7 \mu/sec$
 - Less material & better tracking than MEG (30%)

PIXELATED TIMING COUNTER (PTC)

- 256 tile scintillators on each side
- each tile ~100ps resolution
 - ▶ e⁺ hits 9 tiles on average → ~37ps

a tile scintillator 120x50/40x5mm³

^{H=} ^{50 mm} array of six SiPMs (AdvanSiD 3x3mm²) connected in series on each side

optical fibre for laser calibration

PIXELATED TIMING COUNTER (PTC)

- Clusters of hit tiles are reconstructed
 - Then matched with CDCH tracks
- Calibration among the tiles ~15ps
 - Track-based calibration
 - Laser calibration via optical fibres
- Temperature maintained within ±1°C Support structure water-cooled at 11-15°C
 - To slow down radiation damage <13% degradation by end of experiment
 - < 75kHz / tile at 5 x 10⁷ muons/sec

3D reconstruction of first cluster

a hit to be rejected

LIQUID XENON PHOTON DETECTOR (LXE)

- All photosensors operational @165K & sensitive to VUV light
 - ► 4,092 MPPCs (15x15mm²) on front face cf. MEG uses 2" PMTs Better uniformity enables more precise reconstruction of position & energy
 - ► 668 2" PMTs on other faces

Multiple photons are separated by position & timing and simultaneously measured

LXE DETECTOR - PILEUP ANALYSIS

- Pileup photons are separated by fitting:
 - light distribution in the MPPCs, and
 - summed waveforms of MPPCs & PMTs
- Works up to 1x10⁸ µ/sec
- Efficiency = $92\pm2\%$ @3x10⁷µ/sec

LXE DETECTOR – RADIATION DAMAGE ON MPPC PDE

- damage by radiation. (The real cause of the damage is still unknown and under investigation.)
 - PDE > 2% should not significantly degrade the detector performance.
- Annealing (Joule heating of MPPCs up to 75°C) restored the reduced PDE.

K. leki et al., Nucl. Instrum. Methods A 1053, 168365 (2023)

> The photon detection efficiency (PDE) of MPPCs for VUV light decreased significantly during the run due to surface

> ~28h annealing for each MPPC during the winter shutdown is sufficient to recover PDE for the next year's run.

MEG II DETECTOR

LXE DETECTOR – MONITORING E_{γ} during the run

Various methods to monitor E_{γ} stability during the run:

- (a) 17.6MeV γ -ray from ${}^{7}Li(p,\gamma)^{8}Be$ using Cockcroft-Walton accelerator
- (b) Cosmic rays selected to have penetrated the detector
- (c) Background photon spectrum (radiative decays, annihilations in flight)
- (d) alpha-rays from ²⁴¹Am sources embedded in the detector
- (e) 9MeV γ -rays from ${}^{58}Ni(n, \gamma_9){}^{59}Ni$ by using neutron generator
- Estimated uncertainty of temporal evolution = <u>0.3%</u>

alton accelerator three times a week

LXE DETECTOR – ABSOLUTE E_{γ} **SCALE**

- Charge-exchange reaction $\pi^- p \rightarrow \pi^0 n \rightarrow \gamma \gamma n$ provides a **<u>55MeV monochronibication</u>** by tagging the other γ -ray on the opposite side
- A dedicated calibration run using π^- beam on liquid hydrogen target for each year
- Energy resolution depends on depth (w) of photon conversion point

RADIATIVE DECAY COUNTER (RDC)

- Tag a high energy γ -ray as coming from a radiative decay by detecting a low energy e⁺ in the forward direction.
- Provide discriminating variables in Likelihood Analysis.
- Search sensitivity improved by 7%.

TRIGGER & DATA ACQUISITION

WaveDAQ system

- Trigger and DAQ are integrated in a single, compact system to accommodate 4 times more channels of <u>waveform</u> readouts (8,591) than MEG.
 - > All detector signals are **waveforms**, making the event size as big as ~16MB.
- 35 crates, each holding up to 16 WaveDREAM modules.
 - WaveDREAM: 16-ch DAQ platform with 2 <u>DRS4</u> chips up to 5.0GSPS sampling speed.
- Installed & commissioned in March 2021
- Efficiency >99% for trigger rate up to 35Hz, corresponding to traffic rate of ~8Gbit/s.

M. Francesconi et al., Nucl. Instrum. Methods A 1045, 167542 (2023)

MEG II DETECTOR

TRIGGER & DATA ACQUISITION

- Trigger for $\mu \rightarrow e\gamma$
 - **1)** γ -ray energy
 - LXe weighted sum, $\varepsilon_{E_{\gamma}} = 96\%$
 - 2) Time coincidence
 - LXe & pTC, $\varepsilon_T = 94\%$
 - inefficiency for deeper conversion events
 - 3) Direction match
 - LXe & pTC positions, $\varepsilon_{DM} = 88.5\%$
 - inefficiency due to a small offset of beam position
- Trigger Efficiency for the 2021 Run: $\varepsilon_{TRG} = 80 \pm 1\% @ 3 \times 10^7 \mu^+/s$
 - Largely improved since the 2022 Run

PERFORMANCE SUMMARY

Table 6 Resolutions (Gaussian σ) and efficiencies measured at R_{μ} = $4 \times$

Resolutions	Foreseen	Achieved	MEG
E_{e^+} (keV)	100	89	320
$\phi_{e^+}^{a)}, \theta_{e^+}$ (mrad)	3.7/6.7	4.1/7.2	9.4
y_{e^+}, z_{e^+} (mm)	0.7/1.6	0.74/2.0	
$E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$	1.7/1.7	2.0/1.8	2.4 / 1
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	2.4/2.4/5.0	2.5/2.5/5.0	5/5/
$t_{e^+\gamma}$ (ps)	70	78	122
Efficiency (%)			
$arepsilon_{\gamma}$	69	62	63
${\mathcal E}_{\mathrm{e}^+}$	65	67	30
<i>E</i> _{TRG}	≈ 99	80	99

^{a)}At $\phi_{e^+} = 0$ with correlation taken into account. See text for the details.

OPTIMIZING BEAM RATE $R_{,,}$

- Several beam rates $R_{\mu} = (2 5) \times 10^7$ /s were tried to optimize sensitivity.
 - Higher R_u for more statistics in a fixed Run time
 - Higher R_{μ} increases pileup & degrades ε_{e^+CDCH}
 - Background increases as $(R_{\mu})^2$
 - Rate capability of detectors & DAQ MPPC PDE degradation turned out to be OK
- Running fractions (13%, 41%, 20%, 26%)
 - for (2, 3, 4, 5) $\times 10^7$ /s with trigger rates 4-20Hz

THE 2021 RUN

THE 2021 RUN

Thu Oct 19 07:58:34 2023

THE 2021 RUN

Thu Oct 19 07:58:34 2023

BLIND & LIKELIHOOD ANALYSIS

- Blinded: $48 < E_{\gamma} < 58 \text{MeV}, |t_{e\gamma}| < 1 \text{ns}$
- Unbinned maximum likelihood

$$\mathcal{L}(N_{\text{sig}}, \overline{N_{\text{RMD}}}, N_{\text{ACC}}, x_{\text{T}}) = \frac{e^{-(N_{\text{sig}} + N_{\text{RMD}} + N_{\text{ACC}})}}{N_{\text{obs}}!} \xrightarrow{\text{constrained}} C(N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}}) \times \frac{1}{\text{constrained}} \sqrt{N_{\text{obs}}!} \xrightarrow{N_{\text{obs}}!} (N_{\text{sig}}S(\vec{x_i}) + N_{\text{RMD}}R(\vec{x_i}) + N_{\text{ACC}}A(\vec{x_i}))}$$

$$\vec{x}_i = (E_{\rm e}, E_{\gamma}, t_{\rm e\gamma}, \theta_{\rm e\gamma}, \phi_{\rm e\gamma}, \Delta t_{\rm RDC}, E_{\rm RDC}, n_{\rm pTC})$$

 $x_{\rm T}$ represents the target misalignment uncertainty

TIMING SIDEBAND

Sensitivity S_{90} , defined as median of distributions of 90% C.L. upper limits for an ensemble of pseudo-experiments with null-signal, is 8.8×10^{-13} . cf. MEG 5.3×10^{-13}

TIMING SIDEBAND

Sensitivity S_{90} , defined as median of distributions of 90% C.L. upper limits for an ensemble of pseudo-experiments with null-signal, is 8.8×10^{-13} . cf. MEG 5.3×10^{-13}

UNBLINDED 2021 DATA

UNBLINDED 2021 DATA

66 events in Analysis Region (Sideband estimate 68.0 ± 3.5)

4D distribution

DATA & BEST-FITTED PDF DISTRIBUTIONS

(f) Relative signal likelihood

$$R_{\text{sig}} = \log_{10} \left(\frac{S(x_i)}{f_{\text{RMD}}R(x_i) + f_{\text{ACC}}} \right)$$
$$f_{\text{RMD}} = 0.02, \ f_{\text{ACC}} = 0.9$$

MEG

OBSERVED PROFILE LIKELIHOOD RATIO

- Confidence interval for $N_{sig} > 0$
 - à la Feldman-Cousins
 - Best fit branching ratio \mathscr{B}_{fit}

$$\mathscr{B}_{fit} = -1.1 \times 10^{-16}$$

> 90% C.L. upper limit of branching ratio:

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

MEG: $\mathscr{B}_{90} = 4.2 \times 10^{-10}$
II + MEG combined:

$$\mathscr{B}_{90} = 3.1 \times 10^{-13}$$

combined sensitivity: $S_{90} = 4.3 \times 10^{-13}$

CONSISTENCY CHECK

Also: Likelihood fit with no constraints on $N_{\rm RMD}$ and $N_{\rm ACC}$ lead to a consistent result

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathcal{B}_{90} = 3.1 \times 10^{-13}$$

Expected to finalize the 2022 data analysis in ~a half year.

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathcal{B}_{90} = 3.1 \times 10^{-13}$$

Expected to finalize the 2022 data analysis in ~a half year.

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathcal{B}_{90} = 3.1 \times 10^{-13}$$

Expected to finalize the 2022 data analysis in ~a half year.

-							
1		1		1		1	
	-		-				0
Ē					-	-	0
						-	
,							
	-	-	-	-	-	-	0
	-					-	
)					
•		/				_	

BACKUP SLIDES

47
TM
IEG?
I N -16
< 10 ⁻¹⁷

PROSPECTS OF SENSITIVITY IMPROVEMENTS As presented at ICHEP2022, July 2022, by TM

