

LTP Seminar

Radiative Corrections for MUSE

Marco Rocco

for the $\rm McMUSE$ Team T. Engel, F. Hagelstein, MR, V. Sharkovska, A. Signer, Y. Ulrich

Paul Scherrer Institut

 $26^{\ensuremath{\ensuremath{^{TH}}}}$ June 2023

higher-order predictions and comparison with precision experiments
 focus on low-energy QED scattering processes
 theoretical background for lepton experiments (Mu3e, MUSE, MUonE...)
 all this in

MCMULE

Monte Carlo for MUons and other LEptons https://mule-tools.gitlab.io/

◊ fully-differential Monte Carlo integrator, not an event generator (yet)

[mules by A. Signer]

higher-order predictions and comparison with precision experiments
 focus on low-energy QED scattering processes
 theoretical background for lepton experiments (Mu3e, MUSE, MUonE...)
 all this in

MCMULE

Monte Carlo for MUons and other LEptons https://mule-tools.gitlab.io/

◊ fully-differential Monte Carlo integrator, not an event generator (yet)

[mules by A. Signer]

what this talk does *not* contain

- experimental details
- technical details on higher-order QED calculations
- studies on two-photon-exchange (TPE) corrections

- phenomenology tailored to MUSE
- studies on QED radiative corrections to $\ell^\pm p^* \to \ell^\pm p^*$

lepton-proton scattering

 $\ell\,p\to\ell\,p$

lepton-proton scattering (known subset)

 $\ell\,\ell'\to\ell\,\ell'$

lepton-proton scattering (one step more)

$$\ell \, p^{1\gamma} o \ell \, p^{1\gamma}$$
 "single-dipole" $\ell \, \mu o \ell \, \mu$ "point-like"

lepton-proton scattering @MUSE

$$\ell p^{1\gamma} \to \ell p^{1\gamma}$$
$$\ell \mu \to \ell \mu$$

"single-dipole"

"point-like"

•
$$\ell = \{e^{\pm}, \mu^{\pm}\}$$

lepton-proton scattering @MUSE

$$\ell \, p^{1\gamma} \to \ell \, p^{1\gamma}$$
 $\ell \, \mu \to \ell \, \mu$

"single-dipole"

• $\ell = \{e^{\pm}, \mu^{\pm}\}$

• $E_{\text{beam}} = 210 \text{ MeV}$

lepton-proton scattering @MUSE

$$\ell p^{1\gamma} o \ell p^{1\gamma} \ \ell \mu o \ell \mu$$

"single-dipole"

- $\ell = \{e^{\pm}, \, \mu^{\pm}\}$
- $E_{\text{beam}} = 210 \text{ MeV}$
- $20 \deg < \theta_{\ell} < 100 \deg$

Leading-Order QED (α^2)

LO QED + single dipole

LO QED + single dipole

LO QED + single dipole

NLO QED (α^3)

NLO QED (α^3)

NLO QED (α^3)

NLO QED $(lpha^3)$

NLO QED + single dipole

NLO QED pt. 2

NLO QED pt. 2

NLO QED + mess

NLO QED + double dipole

NLO QED + double dipole

NNLO QED (α^4)

NNLO QED (α^4)

rain of photons

NNLO QED (α^4)

 $\int [d\Phi_4]$

J [d Φ_3]

 $[d\Phi_2]$

rain of photons

photonic fermionic

NNLO QED (α^4)

M. Rocco, 26.06.23 - p.11/17

 $\sigma_p^{(2)}$

 $\sigma_{ep}^{(2)}$

 $\sigma_e^{(2)ff}$

e^-p /µb [S0] 40photonic fermionic 30 6.8 -6.6 -6.4 -1 0.2 -0.10.0 $\sigma_0^{\text{ff}} = \sigma_e^{(1)} = \sigma_e^{(1)\text{ff}}$ $\sigma_{ep}^{(1)} \sigma_{ep}^{(1)ff} \sigma_{p}^{(1)} \sigma_{e}^{(2)} \sigma_{e}^{(2)ff}$ $\sigma_{ep}^{(2)} = \sigma_{p}^{(2)}$ σ_0

NNLO QED + single dipole

NNLO QED + single dipole

 \mathbf{J} [d Φ_4

J [d Φ_3

 $[d\Phi_2$

NNLO QED + single dipole

2

NNLO QED pt. 2

NNLO QED pt. 2

NNLO QED pt. 2

NNLO QED pt. 2

M. Rocco, 26.06.23 - p.13/17

NNLO QED pt. 2

M. Rocco, 26.06.23 - p.13/17

\diamond NLO QED \gtrsim LO hadronic

\diamond NLO QED \gtrsim LO hadronic

\diamond NNLO QED \sim TPE hadronic

\diamond NLO QED \gtrsim LO hadronic

\diamond NNLO QED \sim TPE hadronic

a closer look at MUSE

- forward calorimeter (< ~ 100 mrad)

- forward calorimeter ($\sphericalangle \sim 100 \text{ mrad}$)
- remove events inside w/ $E_{\gamma}^{\rm tot} > 0.4 p$

(@MUSE p = 210 MeV)

- forward calorimeter ($\sphericalangle \sim 100$ mrad)
- remove events inside w/ $E_{\gamma}^{\rm tot} > 0.4 p$ (@MUSE p = 210 MeV)

\diamond NLO QED \sim LO hadronic

- forward calorimeter ($\sphericalangle \sim 100$ mrad)
- remove events inside w/ $E_{\gamma}^{\rm tot} > 0.4p$ (@MUSE $p = 210~{\rm MeV}$)
- \diamond NLO QED \sim LO hadronic
- \diamond NNLO QED \lesssim TPE hadronic

- forward calorimeter ($\triangleleft \sim 100 \text{ mrad}$)
- remove events inside w/ $E_{\gamma}^{\rm tot} > 0.4 p$ (@MUSE p = 210 MeV)
- \diamond NLO QED \sim LO hadronic
- \diamond NNLO QED \lesssim TPE hadronic

muons are available at MUSE

- calorimeter is still there

- calorimeter is still there
- no changes w/out it

- calorimeter is still there
- no changes w/out it
- \diamond NLO QED \lesssim LO hadronic

- calorimeter is still there
- no changes w/out it
- \diamond NLO QED \lesssim LO hadronic
- \diamond NNLO QED < TPE hadronic

- calorimeter is still there
- no changes w/out it
- \diamond NLO QED \lesssim LO hadronic
- \diamond NNLO QED < TPE hadronic

full muone 2-loop amplitude with $M \neq 0$, $m = 0 \rightarrow {}_{\rm [Bonciani\ et\ al.\ 21]}$

full muone 2-loop amplitude with $M \neq 0, \, m \neq 0 \rightarrow \ensuremath{\left[m\right]}$

- $\rightarrow\,$ exploit scale hierarchy $m^2 \ll M^2, Q^2$
- $\diamond \text{ massification: } \mathcal{A}_{\mu e}(m) = \mathcal{S}' \times Z \times Z \times \mathcal{A}_{\mu e}(0) + \mathcal{O}(m)$

[Penin 06, Becher, Melnikov 07; Engel, Gnendiger, Signer, Ulrich 18]

M. Rocco, 26.06.23 - p.21/17

OpenLoops [Buccioni, Pozzorini, Zoller 18, Buccioni et al. 19] LBK theorem [LBK 58-61, Engel, Signer, Ulrich 21, Engel 23]

$$\sum_{i=1}^{\delta} \mathcal{E}_{\gamma \to 0} \mathcal{E} + \left(D_{\mathsf{LBK}} + \mathcal{S} \right) + \mathcal{O}(E_{\gamma}^{0})$$

 \diamond introduce NTS stabilisation [McMule 21, 22]

