

ALBA II Accelerator Upgrade Project Status

Francis Perez PSI, July 7th, 2023

ALBA is the Spanish Synchrotron Radiation Facility

National Public institution with funding 50%/50% from the **Spanish** *Ministerio de Ciencia e Innovacion* and the **Catalan** *Department de Recerca i Universitats*

National and international (28%) staff National and international (40%) users National and international collaborations

Unió Europea Fons Europeu de Desenvolupament Regional Generalitat de Catalunya Departament de Recerca i Universitats

e- Energy = 3 GeV C = 268.8 m Emittance = 4.4 nmrad

10 operating BLs
2 in commissioning
2 in construction
2 for acc. diagnostics

	Current 251.63 mA		Size (1ơ) FE34 Orbit (RMS)	H = 53.1 μm V = 23.7 μm H = 0.059 μm V = 0.031 μm	Be Time Annu Annu	am for to inject: 00 al BA: 9 al MTBF:	BL 0:12:3 96.68 86.8	13 % h
	19h 00m	5.0e-10 mbar	4834	mAh		Beamline Status	5	ID Gap
260 240		mmmmm	n mun	mm	BL01	MIRAS		24.07 mm
					BL04	MSPD		B = 2.10 T
					BL09	MISTRAL		
					BL11	NCD-SWEET		6.26 mm
140 120			-		BL13	XALOC		7.34 mm
- 100 80	op-up o	opera	τιοι		BL16	NOTOS		
					BL20	LOREA		60.75 mm
					BL22	CLAESS		13.00 mm
0				apph apph	BL24	CIRCE		28.27 mm
					BL29	BOREAS		41.43 mm
Message from CR					Wedr	nesday 16-J	un-20	21 13:07:40

In operation since 2012

In operation since 2012

2400+ user visits 450+ yearly experiments

2700+ publications

500+ industrial experiments

Why the upgrade?

7

Evolution of Synchrotron Radiation Sources

To produce new science beyond the '50s

Evolution of ALBA to the 4th Generation ALBA II

ALBA II Upgrade baseline

	1											<u>и</u>
	3	54	Ю	8	5	8	8	R	31	33	8	
	8	8	8	8	8	8	8	8	8	8	8	8
đ												
ALB	Operation	of ALBA										Operation with 14 BLs: 11(2023), +1(2024), +1(2025), +1 (2027)
_												
	Public area	a										
		Design bui	lding_1									
			Design bui	ilding_2								
			Constructi	ion building	<u>g_</u> 1							
				Construct	ion building	_2						
					Urban area	a						AIRA II Accelerator Project
						Building_1	, new uses					ALDA II ACCCICIALOI I TOJECI
	Design Acc	elerator										Design accelerator
				Procurem	ent							Launch call for tenders of the different components
						SAT of part	s					
_							Girder pre	-assembly				Girder pre-assembly
A I								Installation				De-installation of ALBA, installation of ALBA II
ALE									Commissioning			Commissioning (6 months)
	Design nev	w BLs										Design 4(?) new BLs: 2 long, 1 short, renewal of MSPD.
		Procureme	ent									Launch construction of the new BLs
					SAT of part	ts						
						Storage of	parts					
								Installation				Installation. Consider possibility to advance installation of some parts to 2028
									Commissioning			Commissioning (6 months), after accelerator
	Design Ope	erational Bl	L Upgrade									Design Upgrade of operational BLs
		Procureme	ent									Construction of Upgrades
						Installatio	n					Installation
												Commissioning
										Operation	of ALBA II	ALBA II open to users. Operation with 17 BLs

Upgrade the 3rd Generation ALBA Storage Ring to a 4th Generation Ultra Low Emmittance Ring: ALBA II

with the aim of doing it as efficiently as posible, in terms of cost and time. ALBA Managers

ALBA II Upgrade

Five Programs:

- Experiments
 BLs upgrades
 New BLs
- Accelerators
 Accelerator Project
- IT Intrastructures
- Conventional Infraestructures Upgrade infrastructures New Buildings
- Implementation

Optimization parameters

- Keep beam energy 3 GeV.
- Keep the tunnel \rightarrow SR with similar compact circumference.
- Keep existing ID beamlines \rightarrow preserve 16 cells and source points.
- Bending beamlines can be relocated.
- Keep injector (present $\varepsilon_x^{\text{booster}} = 10 \text{ nm} \cdot \text{rad}$).
- Keep infrastructures, as much as possible.
- Straight sections ~4 m, with $\beta_x \sim \beta_y \sim 2$ m.
- Reduce emittance by more than a factor 10 (<400pmrad).
- Full coupling operation option.

Goal: Reduction of emittance by a factor 20 ≈ 200 pmrad

Reproduced from: R. Bartolini "Overview of ongoing 4th generation light source projects worldwide", 7th DLSR Workshop (2021)

IDs radiation: from ALBA to ALBA II

Brilliance

Horizontal Coherent fraction

vs. Photon Energy

Possible long beamlines at BL02-ID , BL03-Bend, BL04-ID, BL08-ID

13 ID beamlines

13

- Bending beamlines
- IR beamline
 - Visible diagnostics
- XR pinhole diagnostics

ALBA II Long Beamlines technologies being defined now

Process:

- Call to scientific community

- Pre evaluation, focusing on 3 proposals
 - Proposals received on May'23
 - Evaluation in progress
 - Decision to be taken in July'23

Applications, among others:

- Ptychographic tomography
- High resolution imaging of materials
- Coherence diffraction
- Spectroscopy
- Resonant Inelastic Scattering
- Coherent imaging and Spectroscopy
- Resonant Soft X-ray Scattering (RSoXS)
- Scanning Transmission X-ray Microscopy (STXM)
- Ptychography

150 – 300 m long beamlines

Figure 1-1 – Layout of the four long BLs

Cell's length comparison

diagram courtesy of M. Carlà (ALBA Acc. Division)

Space requirements for ALBA II are **particularly tight**:

- 16 straight sections in 268m \rightarrow **16.7m per cell**
- In ALBA II every straight section will be 4m
- The space left for magnets/diagnostics/vacuum is 16.7m 4m = 12.7m

Injection cell

- Quadrupoles in the injection cells are detuned to increase β_x in the injection straight
- ▶ 3% change of gradient in the injection cell arc is enough to achieve $\beta_x = 25$ m at the kicker
- ► Natural emittance increases ~20pm (only 2 cells are affected)

Dynamic aperture

Work in progress

- ▶ 14 families of sextupoles for the unit cell (5 SH + 9 SV)
- plus 4 SH + 4 SV close to the injection are independent (2 on each side of the injection straight)
- The missing SV after the injection is reintroduced (is one of the 4 independent SV)
- In a first attempt only on-energy dynamic aperture is optimized (NSGA2)

Injection concept

The ALBA-II lattice is very tight, all the injection elements have to fit in a **4 metres straight section**. The beam from the booster is injected off-axis and a **multipole pulsed kicker** reduces its large oscillations within the dynamic aperture.

Magnets: from ALBA to ALBA II

ALBA

ALBA II

Cell Architecture

ALBA II magnet requirements

 Primary set of requirements (field/gradient strengths and lengths) from Beam Dynamics (original lattice with modified triplet, Dec'22):

Preliminary designs

 By Feb'23 a preliminary set of 3D models for all main magnet types was available:

A2L001b										
Magnet type	Bore diameter [mm]	Min. pole vertical distance [mm]	Effective Length [mm]	Iron Length [mm]	Width [mm]	Height [mm]	Current [Amp∙turn]	Efficiency [%]		03
QUAD (Q3)	20	10	200.0	190.6	484	484	5000	90		
ANTIBEND QF/QFS	27.8	10	297.2	282.5	540	540	5860	91		
BEND QD	20	12.2	867	833.4	310	470	8130	99		QF
BEND QDS	20	12.2	631	602.6	227	342	6573	99.8		
SEXTUPOLE (SH)	24	7.0	104.2	96.2	514	514	2450	95		
SEXTUPOLE (SV)	26	7.6	182.0	174.0	514	514	2460	98		SV
CORRECTOR (COR)		25	85.0	20	262	430	1500/2000			
	A2L001b Magnet type QUAD (Q3) ANTIBEND QF/QFS BEND QD BEND QDS SEXTUPOLE (SH) SEXTUPOLE (SV) CORRECTOR (COR)	A2L001bMagnet typeBore diameter [mm]QUAD (Q3)20ANTIBEND QF/QFS27.8BEND QD20BEND QDS20SEXTUPOLE (SH)24SEXTUPOLE (SV)26CORRECTOR (COR)	A2L001bMagnet typeBore diameter [mm]Min. pole vertical distance [mm]QUAD (Q3)2010ANTIBEND QF/QFS27.810BEND QD2012.2BEND QDS2012.2SEXTUPOLE (SH)247.0SEXTUPOLE (SV)267.6CORRECTOR (COR)25	A2L001bMagnet typeBore diameter [mm]Min. pole vertical distance [mm]Effective Length [mm]QUAD (Q3)2010200.0ANTIBEND QF/QFS27.810297.2BEND QD2012.2867BEND QDS2012.2631SEXTUPOLE (SH)247.0104.2SEXTUPOLE (SV)267.6182.0CORRECTOR (COR)2585.0	A2L001bMagnet typeBore diameter [mm]Min. pole vertical distance [mm]Effective Length [mm]Iron Length [mm]QUAD (Q3)2010200.0190.6ANTIBEND QF/QFS27.810297.2282.5BEND QD2012.2867833.4BEND QDS2012.2631602.6SEXTUPOLE (SH)247.0104.296.2SEXTUPOLE (SV)267.6182.0174.0CORRECTOR (COR)2585.020	A2L001b Bore diameter [mm] Min. pole vertical distance [mm] Effective Length [mm] Iron Length [mm] Width [mm] QUAD (Q3) 20 10 200.0 190.6 484 ANTIBEND QF/QFS 27.8 10 297.2 282.5 540 BEND QD 20 12.2 867 833.4 310 BEND QDS 20 12.2 631 602.6 227 SEXTUPOLE (SH) 24 7.0 104.2 96.2 514 CORRECTOR (COR) 25 85.0 20 262	A2L001b Bore diameter (mm) Min. pole distance (mm) Effective Length (mm) Iron Length (mm) Width (mm) Height (mm) QUAD (Q3) 20 10 200.0 190.6 484 484 ANTIBEND QF/QFS 27.8 10 297.2 282.5 540 540 BEND QD 20 12.2 867 833.4 310 470 BEND QDS 20 12.2 631 602.6 227 342 SEXTUPOLE (SH) 24 7.0 104.2 96.2 514 514 SEXTUPOLE (SV) 26 7.6 182.0 174.0 514 514 CORRECTOR (COR) 25 85.0 20 262 430	A2L001b Magnet type Bore (iameter fmm) Min. pole vertical distance [mm] Effective Length [mm] Iron Length [mm] Width [mm] Height (Amp-turn) QUAD (Q3) 20 10 200.0 190.6 484 484 5000 ANTIBEND QF/QFS 27.8 10 297.2 282.5 540 540 5860 BEND QD 20 12.2 867 833.4 310 470 8130 BEND QD 20 12.2 631 602.6 227 342 6573 SEXTUPOLE (SH) 24 7.0 104.2 96.2 514 514 2450 CORRECTOR (COR) 25 85.0 20 262 430 1500/2000	A2L001b Bore diameter (mm) Min. pole vertical distance [mm] Effective Length (mm) Iron Length (mm) Width (mm) Height (Amp-turn) Efficiency (Mp-turn) QUAD (Q3) 20 10 200.0 190.6 484 484 5000 90 ANTIBEND QF/QFS 27.8 10 297.2 282.5 540 540 5860 91 BEND QD 20 12.2 867 833.4 310 470 8130 99 BEND QD 20 12.2 631 602.6 227 342 6573 99.8 SEXTUPOLE (SH) 24 7.0 104.2 96.2 514 514 2460 98 CORRECTOR (COR) 25 85.0 20 262 430 1500/2000	A2L001b Magnet type Bore diameter (mm) Min. pole vertical distance (mm) Iron Length (mm) Iron (mm) Width (mm) Height (mm) Current (Mmp-turn) Efficiency (%) QUAD (Q3) 20 10 200.0 190.6 484 484 5000 90 ANTIBEND QF/QFS 27.8 10 297.2 282.5 540 540 5860 91 BEND QD 20 12.2 867 833.4 310 470 8130 99 BEND QDS 20 12.2 631 602.6 227 342 6573 99.8 SEXTUPOLE (SH) 24 7.0 104.2 96.2 514 514 2460 98 CORRECTOR (COR) 25 85.0 20 262 430 1500/2000

After several iterations

In addition, magnetic cross-talk

Vacuum system layout

70mm

Beam dynamics lattice layout

Distance between magnets

40, 70 and 100 mm – Compact spaces

Magnets apertures

BPM positions layout

Vacuum system layout

Vacuum system design concept

Hybrid approach

- NEG coated copper chambers
- Conventional chambers with antechambers and absorbers
- Stainless steel for BPMs and correctors chambers

MO type flanges

Integrated bellows

Y. Suetsugu, KEK, "Application of a Matsumoto-Ohtsuka-type vacuum flange to beam ducts for future accelerators", 2005 R.Seraphim, "Vacuum system design for the Sirius storage ring", IPAC2015

RF System

- Main RF high power components reused for ALBA-II.
- RF main voltage must provide enough **RF acceptance** and **redundancy** in case of a cavity trip.

EU-HOM NC cavity

ALBA Main RF IOT based transmitters Upgrade to SSPA

Parameter	Value	Unit
Frequency	499.654	MHz
Number of cavities	6	-
Voltage	2.4	MV
RF acceptance	7	%
Loses per turn (bare lattice)	1.028	MeV
Transmitter power (300 mA)	90	kW
Momentum compaction (α_c)	9.6·E-5	-
Synchrotron frequency*	2.25	kHz
Bunch length $(\sigma)^*$	6.96	ps
* / 1		

* w/o harmonic system

Short bunches lead to small lifetimes due to high Touschek effect (for ALBA $\sigma = \sim 17$ ps)

RF System 3rd Harmonic Active Cavity

The **prototype design** was co-funded by ALBA and the CERN through the collaboration agreement KE2715/BE/CLIC for the Development of CLIC Damping Ring Technologies (2015-2018).

The **prototype construction** was co-funded by ALBA and the European Regional Development Fund (ERDF) within the Framework of the Smart Growth Operative Programme 2014-2020.

Prototyped

The **prototype tests** were co-funded by ALBA, HZB and DESY through the collaboration agreement RCN-CIN202100124 (2020-2023).

Installed at BESSY II

agreement RCN-CIN202100124 (2020-2023).

The **prototype tests** were co-funded by ALBA, HZB and DESY through the collaboration

RF System 3rd Harmonic Active Cavity

Cavity

SSPA

DLLRF

Bunch lengthening **beam tests at** BESSY II with the **3rd Harmonic EU Active Cavity** Prototype

Successfully tested with beam

The upgrade ALBA II also includes: • renovation of the existing beamlines.

- **expansion** of the infrastructure.
- construction of up to three new long beamlines.
- **synergy** to create a scientific and technological pole in the area.

Caterina Biscari, Gabriele Benedetti, Ubaldo Iriso , Jordi Marcos, Valenti Massana, Andrea Fontanet, Maisui Ning, Raquel Muñoz, Ferran Fernández, Juan Carlos Giraldo, Montse Pont, Carles Colldelram, Llibert Ribó, Zeus Martí, Michele Carlà, Thomas Günzel, Laura Torino, Joan Casas, Pol Solans, Jesus Ocampo, Ignasi Bellafont, Javier Boyer, Ricardo Parise, and many others...

