& TRIUMF
Python
IN midas

Ben Smith
Midas Workshop 2023

Discovery,
accelerated

Why python?

= Requested by users at last workshop
= Initial concept was to replace hacky scripts
= python scripts that called odbedit
= midas file > mdump > parse text > python analysis

= many more examples of calling midas command-line
tools from Tcl/bash/csh/python/perl scripts

= Python is common (only?) language that students know
= Python interfaces nicely with C

Ben Smith

Design goals

= Usability
= Make it "pythonic”

= E.g. error-checking via exceptions, not return
codes

» Make simple interfaces with sensible defaults
= Give people the tools they need
= Maintainability
= Don't be a burden on the core C/C++ code
= Make it simple to add new features to python code

Ben Smith

What is implemented

= Midas file reader
= Pure-python implementation
= Midas client

= ODB access, run transitions, event buffers, RPC,
alarms, messages, history...

= Python wrapper calls the C++ code
= Frontend framework

= Periodic/polled equipment - same concepts as C/C++
frontends, just written in python

Ben Smith

File reader

import midas.file_reader

my_file = midas.file_reader.MidasFile("/path/to/file.mid.1z4",

use_numpy=True)

Get ODB as a dict
odb = my_file.get_bor_odb_dump().data
run_number = odb["Runinfo"] ["Run number"]

Loop over events in file

for event in my_file:
Bank data is either numpy array or python tuple
some_counter = event.banks["SCAN"].datal[0]

Ben Smith

Midas client

import midas.client

if _name__ == "_main__":
client = midas.client.MidasClient("pytest")

Get data from ODB
state = client.odb_get("/Runinfo/State")

if state == midas.STATE_STOPPED:
Set data in ODB
client.odb_set("/pyexample", {"an_int": 1, "a_dbl": 4.56})

Write message to midas log (set is_error=True for error)
client.msg("Hello from python")

Ben Smith

Full list of midas.client functions

@ communicate

@ connect_to_other_client

Q@ create_alarm_class

Q@ create_evaluated_alarm

D deregister_disconnect_callback
Q@ deregister_event_request

®@ deregister_message_callback
& deregister._transition_callback
@ disconnect

@ disconnect_from_other_client
@ get_message_facilities

@ get_midas_version

@ get_recent_messages

Q@ get_triggered_alarms

@ hist_get_data

@ hist_get_events

@ hist_get_recent_data

@ hist_get_tags

Ben Smith

@ msg

@ odb_delete

@ odb_exists

@ odb_get

@ odb_get_link_destination
@ odb_last_update_time
@ odb_link

@ odb_rename

@ odb_set

@ odb_stop_watching
@ odb_watch

@ open_event_buffer
@ pause_run

Q@ receive_event

Q@ register_deferred_transition_callback
Q@ register_disconnect_callback
Q@ register_event_request

Q@ register_jrpc_callback

& register_message_callback
Q@ register_transition_callback
Q@ reset_alarm

@ resume_run

@ send_event

@ set_transition_sequence

Q@ start_run

@ stop_run

Q@ trigger_internal_alarm

Example use - data analysis

= Lots of students only know python/numpy

= For several experiments | convert midas events into
experiment-specific data structures

reader = pol_data.PolFile(file_path)

ece in Viewer
Import Run File Here: Run Information: MCS# Info: Extract/Convert Variables:
for pol_event in reader: TR T T
print(pol_event.keysight_voltage) rerEe e

Save Data Plot ToF Save Data
Save Data Plot DAC Vot v Counts Save Data

Save Data Plot Frequency v Counts Save Data

Save Data

= One also has a custom

Save Data Plot ToF Save Data
L L] Save Data Plot DAC Volt v Counts Save Data
analysis GUI in python/Tk
Save Data
Save Data Plot ToF Save Data
Save Data Plot DAC Volt v Counts O T,
Avi Save Data Plot Frequency v Counts
Ave 3] Input Save Data 2.0
TRILK ER: IBDA1 Save Data
TRILIS: BDA2 Save Data 15
TRILIS' IBD/ Save Data i j i ! 1
TRILIS’ A4 Save Data
1.0 oleleleldldldleldldleldleldleldleldleldlelleld
l Save Data
NEUT:ASYM Save Data E E E E g E
: 0.5
ight Voltage Save Data
View Variations in Readback Voltages
) 0.0
Ben Smith 0 100 200 300 400 500

AEIPQ=R

Example use - frontend

= Many slow control devices use LXI/vxi-11 protocol
= E.9. Tektronix/LeCroy scopes/function generators
= Python has a vxi11 package available on PyPi

= pip install python-vxill, and you don't have
to worry about the low-level details

= Frontend in python doesn't require much code to be
written (and performance isn't important in this case)

= Could all be done in C++, but quicker for me to
Implement in python

Ben Smith

10

Example use - complex configuration

= Many of my experiments do complex computations before
configuring a device

= E.g. computing RF frequencies and modulation based
on human-understandable inputs

= Students often send me the calibration routines in python
= May as well keep that code rather than re-writing!

= | write custom webpages that show the input and output
= Use RPC and/or ODB hotlinks

= Much nicer to report problems early, rather than waiting
until user tries to start a run

Ben Smith

nnnnnnn

mmmmm

mmmmmmm

]
Event bump
OOOOO nderscores, and M nok 2 with 3 number.
= « Allowed operators: + - * / A O
-_— = « Allowed math functions: sin, cos, tan, asin, acos, atan, abs, exp, pow, sart, log, log2, logld.
6] + Example formula (I you define a varable): (SUnGOA? + cosCD) / 2.5
Soncac 5 Variables:
o 4155

eics

AAAAAA
aaaaaa
o

» PPG is a 32-channel timing sequencer used
at TRIUMF. Accepts low-level bytecode.

= Users wanted a simple way to program it
= Python frontend/compiler and webpage!
» Pulses/loops etc stored in ODB

= \Webpage issues RPC to get a visual
display of the sequence

= Bytecode generated at run start

= Compiler would have been much more e
tedious to write in C++

uuuuuu

Ben Smith s

mmmmmm

<technical details>

12

Advanced usage - API

= 0db_set has parameters that let
you do powerful things, especially
when passing a dict

= Defaults are sensible (principle of
least surprise), but options are there
If you need them

= All the options are clearly
documented in client.py

» Same idea for many of the functions

Ben Smith

def odb_set(self, path, contents, create_if_needed=True,

remove_unspecified_keys=True, resize_arrays=True,
lengthen_strings=True, explicit_new_midas_type=None,
update_structure_only=False):

Set the value of an ODB key, or an entire directory. You may pass in

normal python values, lists and dicts and they will be converted to

appropriate midas ODB key types (e.g. int becomes midas.TID_INT, bool

becomes midas.TID_BOOL).

Sensible defaults have been chosen for converting python types to the C

types used internally in the midas ODB. However if you want more control
over the ODB type, you may use the types defined in the ctypes library.

For example, regular python integers become a midas.TID_INT, but you can
use a ‘ctypes.c_uint32" to get a midas.TID_DWORD.

If you are setting the content of a directory and care about the order
in which the entries appear in that directory, ‘contents’ should be a
“collections.OrderedDict’ rather than a basic python dict. See the note
in ‘odb_get’ for more about dictionary ordering.

Args:
* path (str) - The ODB entry to set. You may specify a single array
index if desired (e.g. "/Path/To/My/Array[1]").

* *

create_if_needed (bool) - Automatically create the ODB entry
(and parent directories) if needed.

remove_unspecified_keys (bool) - If ‘path’ points to a directory
and ‘contents’ is a dict, remove any ODB keys within ‘path’ that
aren't present in ‘contents'. This means that the ODB will exactly
match the dict you passed in. You may want to set this to False
if you want to only update a few entries within a directory, and
want to do so with only a single call to “odb_set()".

resize_arrays (bool) - Automatically resize any ODB arrays to match
the length of lists present in ‘contents'. Arrays will be both
lengthened and shortened as needed.

lengthen_strings (bool) - Automatically increase the storage size
of a TID_STRING entry in the ODB if it is not long enough to
store the value specified. We will include enough space for a
final null byte.

explicit_new_midas_type (one of midas.TID_xxx) - If you're
setting the value of a single ODB entry, you can explicitly
specify the type to use when creating the ODB entry (if needed).

update_structure_only (bool) - If you want to add/remove entries
in an ODB directory, but not change the value of any entries
that already exist. Only makes sense if contents is a dict /
‘collections.OrderedDict’. Think of it like db_check_record from
the C library.

*

*

*

*

*

Raises:

* KeyError if ‘create_if_needed' is False and the ODB entry does not
already exist.

* TypeError if there is a problem converting ‘contents’ to the C
type we must pass to the midas library (e.g. the ODB entry is
a TID_STRING but you passed in a float).

* ValueError if there is a non-type-related problem with ‘contents®
(e.g. if ‘resize_arrays' is False and you provided a list that
doesn't match the size of the existing ODB array).

* midas.MidasError if there is some other midas issue.

contents (int/float/string/tuple/list/dict etc) - The new value to set

14

Advanced usage - ctypes

= ODB gives fine control over how data is stored
= uint8 t, int16 _t, float, double etc
= Python just has integer and float (really a double)

= [f you care, can use ctypes library to specify exact data
type you want (e.g. ctypes.c_uint32) and/or specify
the midas data type (e.g. midas.TID_UINT32)

Ben Smith

15

Implementation of midas.client - C side

= Python ctypes library comes as standard and can call C
functions

» Midas is now compiled as C++, which is much harder to
call from python

» | added a midas_c_compat.cxx/h file that provides a C-
compatible wrapper of the functions | need

= Generally trivial, some shenanigans for functions that
populate std: :vector<std: :string> etc (charskx)

= All exposed functions use extern "C"

Ben Smith

Implementation of midas.client - py side

= midas.MidasLib uses ctypes' ability to call C functions

= Automatically discovers all the functions in libmidas-c-
compat.so

= Intercepts all the return values from C functions

= If not 1 (SUCCESS), raises an Exception

= Whitelist of functions that return other codes (e.qg.
al_reset_alarm can return "AL_RESET") or that don't
return status codes at all

Ben Smith

16

17

Process to expose a new function

= Write a wrapper in midas_c_compat.cxx/h (with conversion
between C-compatible and C++ if needed)

INT c_al_reset_alarm(const char xalarm_name) {
return al_reset_alarm(alarm_name);

}

= Write python function in midas.client (with conversion
between python and ctypes if needed)

def reset_alarm(self, alarm_name):
c_name = ctypes.create_string_buffer(bytes(alarm_name, "utf-8"))
self.lib.c_al_reset_alarm(c_name)

= Edit MidasLib if this C function is "special” and doesn't
return a status code

Ben Smith

</technical details>

18

19

Future plans

= | recently added support for accessing the history system
= Anything you did with mhist can be done in python

= | don't think there are any major midas features left that
can't be accessed through python

= Keep emailing me with requests though!

= There are always use cases that | haven't thought of
(e.g. 40kHz of events through a python frontend,
getting recent messages from the log, ...)

= I'll try to implement/improve ASAP

Ben Smith

20

Summary

= Lots of progress on using python in midas since the last
workshop

= Should be easy to maintain as midas evolves

= You should be able to write scripts, frontends and data
analysis code all in python

= | really like having custom webpages talking to python
code via JRPC

= Let me know if there are any features or improvements
you'd like to see!

Ben Smith

