
D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Python
in midas

Ben Smith
Midas Workshop 2023

Ben Smith

Why python?
▪ Requested by users at last workshop
▪ Initial concept was to replace hacky scripts

▪ python scripts that called odbedit
▪midas file > mdump > parse text > python analysis
▪many more examples of calling midas command-line

tools from Tcl/bash/csh/python/perl scripts

▪ Python is common (only?) language that students know
▪ Python interfaces nicely with C

2

Ben Smith

Design goals
▪ Usability

▪Make it "pythonic"
▪ E.g. error-checking via exceptions, not return

codes
▪Make simple interfaces with sensible defaults
▪ Give people the tools they need

▪Maintainability
▪ Don't be a burden on the core C/C++ code
▪Make it simple to add new features to python code

3

Ben Smith

What is implemented
▪Midas file reader

▪ Pure-python implementation
▪Midas client

▪ ODB access, run transitions, event buffers, RPC,
alarms, messages, history...
▪ Python wrapper calls the C++ code

▪ Frontend framework
▪ Periodic/polled equipment - same concepts as C/C++

frontends, just written in python

4

Ben Smith

File reader
import midas.file_reader

my_file = midas.file_reader.MidasFile("/path/to/file.mid.lz4",
 use_numpy=True)

Get ODB as a dict
odb = my_file.get_bor_odb_dump().data
run_number = odb["Runinfo"]["Run number"]

Loop over events in file
for event in my_file:
 # Bank data is either numpy array or python tuple
 some_counter = event.banks["SCAN"].data[0]

5

Ben Smith

Midas client
import midas.client

if __name__ == "__main__":
 client = midas.client.MidasClient("pytest")

 # Get data from ODB
 state = client.odb_get("/Runinfo/State")

 if state == midas.STATE_STOPPED:
 # Set data in ODB
 client.odb_set("/pyexample", {"an_int": 1, "a_dbl": 4.56})

 # Write message to midas log (set is_error=True for error)
 client.msg("Hello from python")

6

Ben Smith

Full list of midas.client functions
7

Ben Smith

Example use - data analysis
▪ Lots of students only know python/numpy
▪ For several experiments I convert midas events into

experiment-specific data structures

 reader = pol_data.PolFile(file_path)

 for pol_event in reader:
 print(pol_event.keysight_voltage)

▪ One also has a custom
analysis GUI in python/Tk

8

Ben Smith

Example use - frontend
▪Many slow control devices use LXI/vxi-11 protocol

▪ E.g. Tektronix/LeCroy scopes/function generators
▪ Python has a vxi11 package available on PyPi

▪ pip install python-vxi11, and you don't have
to worry about the low-level details

▪ Frontend in python doesn't require much code to be
written (and performance isn't important in this case)
▪ Could all be done in C++, but quicker for me to

implement in python

9

Ben Smith

Example use - complex configuration
▪Many of my experiments do complex computations before

configuring a device
▪ E.g. computing RF frequencies and modulation based

on human-understandable inputs
▪ Students often send me the calibration routines in python

▪May as well keep that code rather than re-writing!
▪ I write custom webpages that show the input and output

▪ Use RPC and/or ODB hotlinks
▪Much nicer to report problems early, rather than waiting

until user tries to start a run

10

Ben Smith

Example use - PPG compiler
▪ PPG is a 32-channel timing sequencer used

at TRIUMF. Accepts low-level bytecode.
▪ Users wanted a simple way to program it
▪ Python frontend/compiler and webpage!

▪ Pulses/loops etc stored in ODB
▪Webpage issues RPC to get a visual

display of the sequence
▪ Bytecode generated at run start

▪ Compiler would have been much more
tedious to write in C++

11

<technical details>

12

Ben Smith

Advanced usage - API
▪ odb_set has parameters that let

you do powerful things, especially
when passing a dict
▪ Defaults are sensible (principle of

least surprise), but options are there
if you need them
▪ All the options are clearly

documented in client.py
▪ Same idea for many of the functions

13

Ben Smith

Advanced usage - ctypes
▪ ODB gives fine control over how data is stored

▪ uint8_t, int16_t, float, double etc
▪ Python just has integer and float (really a double)
▪ If you care, can use ctypes library to specify exact data

type you want (e.g. ctypes.c_uint32) and/or specify
the midas data type (e.g. midas.TID_UINT32)

14

Ben Smith

Implementation of midas.client - C side
▪ Python ctypes library comes as standard and can call C

functions
▪Midas is now compiled as C++, which is much harder to

call from python
▪ I added a midas_c_compat.cxx/h file that provides a C-

compatible wrapper of the functions I need
▪ Generally trivial, some shenanigans for functions that

populate std::vector<std::string> etc (char***)
▪ All exposed functions use extern "C"

15

Ben Smith

Implementation of midas.client - py side
▪midas.MidasLib uses ctypes' ability to call C functions
▪ Automatically discovers all the functions in libmidas-c-

compat.so
▪ Intercepts all the return values from C functions

▪ If not 1 (SUCCESS), raises an Exception
▪Whitelist of functions that return other codes (e.g.

al_reset_alarm can return "AL_RESET") or that don't
return status codes at all

16

Ben Smith

Process to expose a new function
▪Write a wrapper in midas_c_compat.cxx/h (with conversion

between C-compatible and C++ if needed)
 INT c_al_reset_alarm(const char *alarm_name) {
 return al_reset_alarm(alarm_name);
 }

▪Write python function in midas.client (with conversion
between python and ctypes if needed)

 def reset_alarm(self, alarm_name):
 c_name = ctypes.create_string_buffer(bytes(alarm_name, "utf-8"))
 self.lib.c_al_reset_alarm(c_name)

▪ Edit MidasLib if this C function is "special" and doesn't
return a status code

17

</technical details>

18

Ben Smith

Future plans
▪ I recently added support for accessing the history system

▪ Anything you did with mhist can be done in python
▪ I don't think there are any major midas features left that

can't be accessed through python
▪ Keep emailing me with requests though!

▪ There are always use cases that I haven't thought of
(e.g. 40kHz of events through a python frontend,
getting recent messages from the log, ...)
▪ I'll try to implement/improve ASAP

19

Ben Smith

Summary
▪ Lots of progress on using python in midas since the last

workshop
▪ Should be easy to maintain as midas evolves
▪ You should be able to write scripts, frontends and data

analysis code all in python
▪ I really like having custom webpages talking to python

code via JRPC
▪ Let me know if there are any features or improvements

you'd like to see!

20

