

Midas at Mu3e: Pixel QC test

Luigi Vigani Midas Workshop 13/09/2023

Mu3e aims to observe/exclude the μ →eee decay with 10¹⁶ single event sensitivity

Tracking system needed! 2844 HV-MAPS: Mupix11 Each 20x21x0.05 mm³

Mu3e aims to observe/exclude the μ →eee decay with 10¹⁶ single event sensitivity

Tracking system needed! 2844 HV-MAPS: Mupix11 Each 20x21x0.05 mm³

A solid QC testing campaign is needed All chips must be qualified <u>before</u> mounting inside the detector modules!

QC test setup: hardware

QC test setup: hardware

QC test setup: hardware

- Chip inserted in guides
- Needles sticking out of PCB against the chip
- Manual actuator presses chip onto needles
- Electrical contact in place
- Tests can be carried out
- Mu3e miniDAQ used: compact version of the DAQ shown in the previous presentation

Based on MIDAS

Several front-ends for the different components

Based on MIDAS

Several front-ends for the different components

Each with its functionality

Special case: analyzer

- What reported so far works nicely for "slow control"
 - With pixel data (64,000 pixels per chip) not possible to work with ODB calls
- The Mu3e DAQ takes data from the chip and dump them to Midas events
- An analyzer based on manalyzer runs in parallel with the QC
 - The analyzer can interact with the ODB via odbxx
- The procedure is then
 - Sequencer script starts run and wait the necessary time
 - Analyzer collects and analyze data (AnalyzeFlowEvent)
 - Sequencer script stops run
 - Analyzer extracts the relevant measurements from the data (end of run function)
 - Analyzer writes the relevant measurements in the ODB
 - Sequencer scripts gets those measurements for its algorithm
- Analyzer acts like a front-end

QC test: file structure

Control parameters

ower Setup		Man	Manual Chip Control		QC test	ts
		HV S	UPPLY (19	2.168.0.0	68)	
hannel	State De	mand Volta	ge Voltage	Current Lim	it Current (uA) Descripti
	-5		5.000e+0	2.000e-5	1.694e-5	HV SUPP
			LV SUF	PPLY		
Char	nnel State	e Demand V	LV SUF oltage Voltag	PPLY e Current Li	mit Curren	t Description
Char 0	nnel State	e Demand V 2.07	LV SUF oltage Voltag 2.07	PPLY e Current Li 1.000	mit Curren	t Description Chip Power
Char 0 1	nnel State	2.07 24.00	LV SUF oltage Voltag 2.07 24.00	PPLY e Current Li 1.000 1.000	mit Curren 0.000 0.180	t Description Chip Power SCS/3000
Char 0 1 2	nnel State	2 Demand V 2.07 24.00 17.00	LV SUF oltage Voltag 2.07 24.00 17.00	PPLY e Current Li 1.000 1.000 1.000	mit Curren 0.000 0.180 0.674	t Description Chip Power SCS/3000 FEB

QC test: custom page

ver Setup

Control QC tests

t No	No. Lot No. Item No.						
L NO.	2	21 NO.	Parameters				
	3	31	Name	Value			
se a	QC test		Low voltage (V)	\$global_lv_voltage			
	~	J	HV voltage (V)	<pre>\$global_hv_voltage</pre>			
			HV current limit (uA)	\$global_hv_current_limit			
			IV scan LV off (boolean)	1			
			IV scan LV on (boolean)	0			
			IV scan chip configured (boolean)	1			
			IV scan: HV start voltage (V)	0			
			IV scan: HV stop voltage (V)	27			
			IV scan: HV step size (V)	2			
			IV scan: HV fine step size (V)	0.5			
			IV scan: Current fraction (fine steps)	0.5			
			Power on: HV on (boolean)	1			
			on-chip Volt: Adjust voltage (boolean)	1			
			on-chip Volt: Number of iterations	2			
			on-chip Volt: VDD(A) target voltage	<pre>\$global_vdd_target_voltage</pre>			
			on-chip Volt: VSSA target voltage	<pre>\$global_vss_target_voltage</pre>			
			VDAC scan: ThHigh start	90			
			VDAC scan: ThHigh stop	120			
			VDAC scan: ThHigh steps	5			
			VDAC scan: ThLow start	90			
			VDAC scan: ThLow stop	120			
			VDAC scan: ThLow steps	5			
			VDAC scan: Baseline start	85			
			VDAC scan: Baseline stop	115			
			VDAC scan: Baseline steps	5			
			VDAC scan: BLPix start	60			
			VDAC scan: BLPix stop	160			
			VDAC scan: BLPix steps	10			
			VDAC scan: ref_Vss start	140			
			VDAC scan: ref Vss stop	210			
			VDAC scan: ref_Vss steps	10			
			VDAC scan: Sequential scan (boolean)	0			
			LVDS links: VPVCO start	12			
			LVDS links: VPVCO stop	37			
			LVDS links: VNVCO start	\$VPVCO start+1			
			LVDS links: VNVCO stop	\$VPVCO_stop+1			
			LVDC linker VCO stan size	-			

	QC grading parameters:	
	Name	Value
	Max. allowed QC score	10
	no FullQC canceling (boolean)	1
FAIL	Minimum HV	10
GRADE	Operational HV	25
FAIL	Min. LV current (mA) Bias Off	20.0
FAIL	Min. LV current (mA) Bias On	300.0
FAIL	Max. LV current (mA) Bias Off	200.0
FAIL	Max. LV current (mA) Bias On	600.0
GRADE	Min. LV current (mA) Bias Off	30.0
GRADE	Min. LV current (mA) Bias On	400.0
GRADE	Max. LV current (mA) Bias Off	100.0
GRADE	Max. LV current (mA) Bias On	500.0
FAIL	Min. TempDiode Voltage	0.5
FAIL	Max. TempDiode Voltage	1.1
FAIL	Max. ΔVDD to target voltage	0.1
FAIL	Max. ΔVSSA to target voltage	0.1
GRADE	Max. ΔVDD to target voltage	0.025
GRADE	Max. ΔVSSA to target voltage	0.025
GRADE	Max. AVG VDD(A) deviations	0.05
GRADE	Max. AVG VSSA deviations	0.05
TARGET	ThHigh Slope (V/DAC)	0.0065
FAIL	ThHigh slope difference (rel.)	0.2
GRADE	ThHigh slope difference (rel.)	0.1
FAIL	ThHigh AVG rel. slope deviations	0.001
GRADE	ThHigh AVG rel. slope deviations	0.005
TARGET	ThLow Slope (V/DAC)	0.0
FAIL	ThLow slope difference (rel.)	0.2
GRADE	ThLow slope difference (rel.)	0.1
FAIL	ThLow AVG rel. slope deviations	0.001
GRADE	ThLow AVG rel. slope deviations	0.0005
TARGET	Baseline Slope (V/DAC)	0.0065
FAIL	Baseline slope difference (rel.)	0.2
GRADE	Baseline slope difference (rel.)	0.1
FAIL	Baseline AVG rel. slope deviations	0.001
GRADE	Baseline AVG rel. slope deviations	0.0005
TARGET	BLPix Slope (V/DAC)	0.0065
FAIL	BLPix slope difference (rel.)	0.2
GRADE	BLPix slope difference (rel.)	0.1
FAIL	BLPix AVG rel. slope deviations	0.001
GRADE	BLPix AVG rel. slope deviations	0.0005
TARGET	ref_Vss Slope (V/DAC)	0.006
FAIL	ref_Vss slope difference (rel.)	0.5
GRADE	ref_Vss slope difference (rel.)	0.1
FAIL	ref_Vss AVG rel. slope deviations	0.002

GRADE ref_Vss AVG rel. slope deviations 0.0005

The html page takes care of the interaction with the sequencer (load script, set parameters, start)

Generally the default parameters work, only experts will change them

QC test: sparse results

These scripts will become the basis of all QC tests for Mu3e Pixels

More elaborate components will be tested, with up to 36 chips at the same time

Efforts are being made to have more flexible testing schemes:

- More elaborate ODB folders for configuration and output
 - to loop over all chips in the system
- More dynamic html custom page

QC setup: further future improvements

It would be nice to have them running online The x and y axes are vectors in the ODB Javascript library coming...? Not really necessary in the long run (ideally once the QC works no need to check the page)

Integrate Python API...?

- Analysis code written in Python
 - More elaborate calculations (cross-test correlations, multiple chips,...)
 - It loads the output JSON files
- The analysis could work online alongside the testing procedure
 - It will access directly the values in the ODB
 - Updating results as it goes

Possible other candidates would be Javascript pages, Python API, or special frontend,...

- Test routines use sequential commands
 - Javascript async
- Test routines can be executed remotely and possibly by more people
 - Everybody can see if the sequencer is running
 - Less risk of conflict

The QC scripts will be the blueprint for calibration procedures in the experiment!

Backup

Some features implemented in Midas to perform Mu3e pixel QC test

- ODBSAVE command to save an ODB folder in JSON format
- TinyExpr library to convert more complicated math expressions

Small gimmicks:

- Generic functions to be used by all scripts are defined in the entry script as SUBROUTINES
 - They can not have return statements
 - All return variables defined in entry script and changed by the subroutines
- We want to run all tests in sequence or just one at a time
 - For each test 2 scripts:
 - The first contains the routine itself as one subroutine
 - The latter sets the input parameters and run the subroutine from the first
 - The full QC script loads all the scripts containing the routines and sets all parameters