

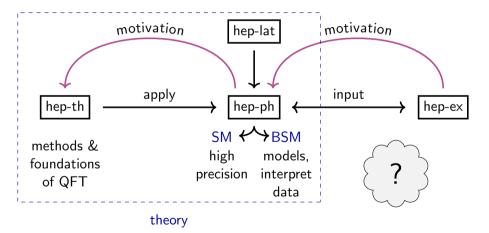
LTP(izza)hD

an experimentalists-friendly overview of the treatment of QED radiative corrections

QED corrections for low-energy experiments

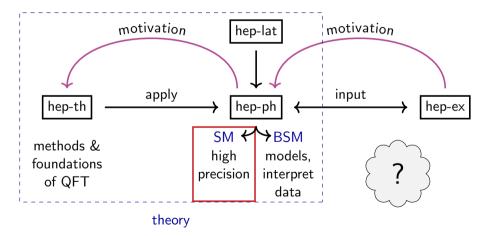
Sophie Kollatzsch

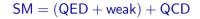
LTP theory group

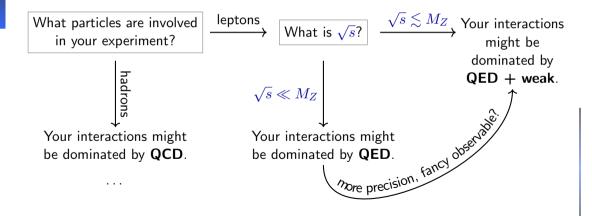

26 September 2023

Sophie Kollatzsch, 26.09.23 - p.1/14

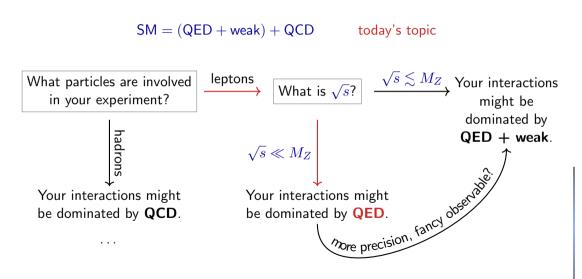
landscape of particle physics


(my) point of view




landscape of particle physics

(my) point of view – today's topic



task calculate cross section σ for a given process $i \rightarrow f$ as precisely as possible

$$\sigma = \int_{\text{phase space}} i \int f$$

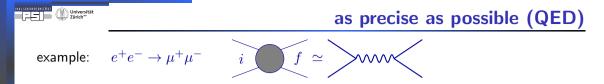
task calculate cross section σ for a given process $i \rightarrow f$ as precisely as possible

workflow

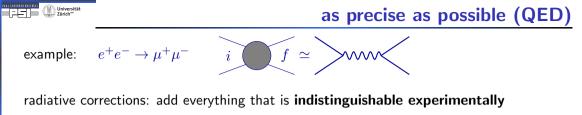
- 1. calculate the amplitudes
 - 1.1 SM theory input
 - 1.2 regularisation scheme
 - 1.3 loop integrals
 - 1.4 tools: OpenLoops

- 2. do the phase space integration
 - 2.1 subtraction scheme
 - 2.2 numerical instabilities
 - 2.3 adapt to experiment
 - 2.4 ...

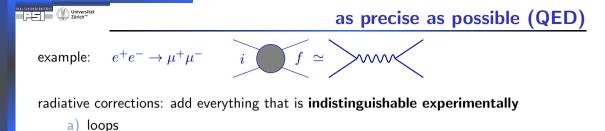
task calculate cross section σ for a given process $i \rightarrow f$ as precisely as possible



workflow – today

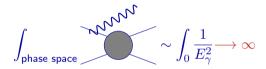

- 1. calculate the amplitudes
 - 1.1 SM theory input
 - 1.2 regularisation scheme
 - 1.3 loop integrals
 - 1.4 tools: OpenLoops

- 2. do the phase space integration
 - 2.1 subtraction scheme
 - 2.2 numerical instabilities
 - 2.3 adapt to experiment
 - 2.4 ...


undetected massless particles \rightsquigarrow subtraction scheme

radiative corrections: add everything that is indistinguishable experimentally

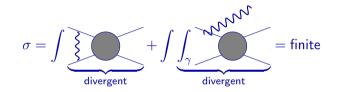
a) loops



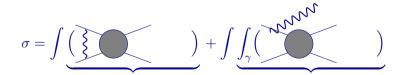
b) (soft) photons – photons with very low energy can escape undetected

ANNA ALTA ALTA A

challenge: integration over the photon phase space yields ∞

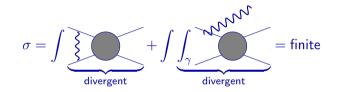


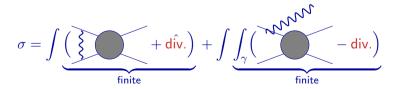
The fact that photons with very low energy can escape undetected becomes visible on the theory side by **divergences**.



Bloch-Nordsieck theorem:

divergences due to photons will cancel against divergences due to loops


 \implies use subtraction schemes to avoid divergent phase space integrals

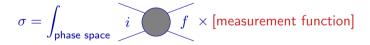


Bloch-Nordsieck theorem:

divergences due to photons will cancel against divergences due to loops

 \implies use subtraction schemes to avoid divergent phase space integrals

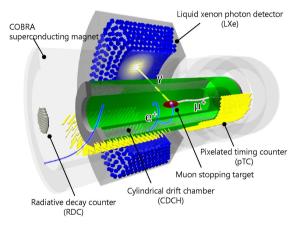
 \implies allows for numerical evaluation of the integrals



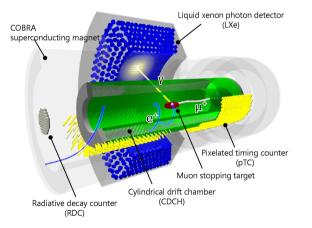
real world = (detector response) × (actual physics event)

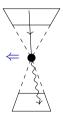
the real world has cuts

- detectors are not perfect
- cuts can disentangle background

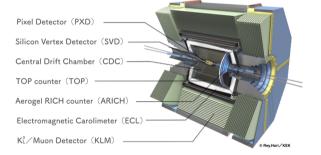

we implement such cuts (i.e. the geometry of the detector) in our calculation

 \implies numerical evaluation of the integrals is indispensable

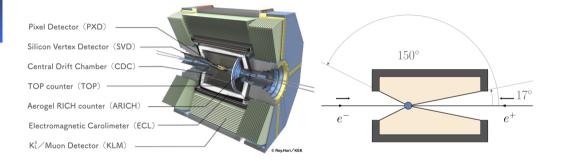



example 1: MEG geometry

example 1: MEG geometry

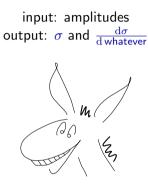


Sophie Kollatzsch, 26.09.23 - p.9/14



example 2: Belle geometry

example 2: Belle geometry


Sophie Kollatzsch, 26.09.23 - p.10/14

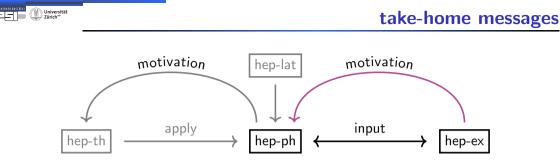
Universität Zürich^{®®}

f.I.t.r.: F.Hagelstein (Mainz), A.Coutinho (IFIC), N.Schalch (Bern), L.Naterop (Zurich & PSI), S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), M.Rocco (PSI), T.Engel (Freiburg), V.Sharkovska (Zurich & PSI), Y.Ulrich (Durham), A.Gurgone (Pavia) not pictured: P.Banerjee (IIT Guwahati), D.Moreno (PSI), D.Radic (Tubingen)

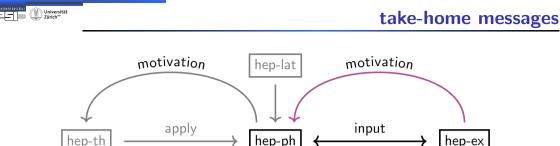
MCMULE mule-tools.gitlab.io

Sophie Kollatzsch, 26.09.23 - p.11/14

McMule @ PSI experiments


MEG $\mu \rightarrow e\gamma$ and Mu3e $\mu \rightarrow eee$

- SM signal zero, goal: BSM
- background $\mu \to e\nu\nu + \gamma$ and $\mu \to e\nu\nu + ee$ for small ν energies
- support for axion-like particle searches in $\mu
 ightarrow eX$


$\mathsf{MUSE}\; ep \to ep, \, \mu p \to \mu p$

- goal: proton radius + TPE
- LTP seminar in June 2023 by Marco Rocco!

- Low-energy experiments have motivated PSI theorists to develop MCMULE, a framework for QED corrections for processes involving leptons.
- MCMULE provides predictions for MEG, Mu3e, MUSE and many more experiments outside of PSI.
- There are challenges in the calculation of radiative corrections.
 Many of them are under control, many more are waiting to be explored!

- Low-energy experiments have motivated PSI theorists to develop MCMULE, a framework for QED corrections for processes involving leptons.
- MCMULE provides predictions for MEG. Mu3e. MUSE and many more experiments outside of PSI.
- There are challenges in the calculation of radiative corrections. Many of them are under control, many more are waiting to be explored!

There are many more things the LTP theory group is working on \Rightarrow next theory talks!

hep-ex

En Guete mitenand!

Sophie Kollatzsch, 26.09.23 - p.14/14