
Use of beam loss monitor to compute lifetime at

SLS

Yacine El Yamani

August 2023

1

Contents

1 Introduction 4

2 Libera BLM 4
2.1 Working modes of Libera BLM 4
2.2 Loss, lifetime and beam current 4

3 How the lifetime is beam currently calculated 6

4 Noise measurement 6

5 First attempt to compute the lifetime with beam loss monitor 8
5.1 First measurement: Changing horizontal chromaticity 8

5.1.1 Impact of the change of horizontal chromaticity 8
5.1.2 Fit of lifetime with loss 10

5.2 Second measurement: Changing vertical chromaticity 11
5.2.1 Impact of the change of vertical chromaticity 11
5.2.2 Fit of lifetime with loss 13

5.3 Third measurement: Changing the horizontal tune 14
5.3.1 Impact of the change of horizontal tune 14
5.3.2 Fit of lifetime with loss 15

5.4 Fourth measurement: Changing the horizontal tune 16
5.4.1 Impact of the change of horizontal tune 16
5.4.2 Fit of lifetime with loss 18

6 Fit of the lifetime on nominal values 19
6.1 Test of the fits done during the shift 19
6.2 Using data acquired passively during user operation 19
6.3 How the data is processed ? . 20

7 Fifth measurement: Change of the beam size 21
7.1 Measurement of gas scattering lifetime and Touschek lifetime . . 21
7.2 Using the lifetime given by the EPICS channel 22

7.2.1 First measurement . 22
7.2.2 Second measurement . 23
7.2.3 Third measurement . 24
7.2.4 Conclusion on these three fits 26

7.3 Using the lifetime calculated with the beam current 26
7.3.1 First Measurement . 26
7.3.2 Second Measurement . 28
7.3.3 Third Measurement . 29
7.3.4 Conclusion on these three fits 31

7.4 Using the three measurement merged for a fit 31

8 Uncertainty on the fits 33

2

9 Conclusion 34

10 Appendix 36
10.1 Figures of Tosuchek lifetime vs Loss 36
10.2 Scripts . 38

3

1 Introduction

In this document I will explain how to use beam loss monitors (BLM) and how
to compute lifetime with their values. To do this I will use Fast beam loss
monitors (Libera BLM) and slow beam loss monitors (CMOS BLM). I will also
explain how to compute Touschek lifetime during user operation at SLS

2 Libera BLM

2.1 Working modes of Libera BLM

The first sensors we will discuss are the Libera BLM. The Libera BLM is a
beam loss monitor that can work in two modes [1]:

• The slow mode: used during user operation and for which a 1MΩ impedance
is needed

• The fast mode: used during the injection and for which a 50Ω impedance
is needed

In order to command these modes a program is necessary to control the impedance
of the sensors at each time. The general method is to get the information if an
injection occurs or not. This is given by the EPICS channel ALIRF-GUN:TRIG-
FLIP.OVAL (0 means there is no injection, 1 means there is an injection). Ac-
cording to this PV values we need to change the values of the EPICS channels
controlling the impedance of the sensors:
ARIDI-BLM10:TerA s / :TerB s / :TerC s / :TerD s 0=50Ω (low impedance)
1=1MΩ (high impedance). The control of these EPICS channel is done with
the Python library PYCAFE [2]

2.2 Loss, lifetime and beam current

With the Libera BLM I gathered in the same graph the evolution of the loss
and of the lifetime versus time and also the loss and PCT reading versus time.
To create this graphs, the EPICS channels for all these parameters are needed:

• For the losses, look at the channels:ARIDI-BLM10:SigSa.A,B, C and D
which are the four channels where the losses are measured

• For the lifetime reading, use the EPICS channel: ARIDI-PCT:TAU-HOUR

• For the PCT reading , use the EPICS channel:ARIDI-PCT:beam current

Knowing these channels, a plot of lifetime, loss and PCT over time is then pos-
sible:

4

Figure 1: Lifetime and loss VS time over 130s (blue lines depicts the loss mea-
sured in channel A, green are the losses measured in channel B, red are the
losses measured in channel C, cyan are the losses measured in channel, D and
magenta is the lifetime in hour)

Figure 2: PCT and loss VS time over 250s (Blue are the losses measured in
channel A, green are the losses measured in channel B, red are the losses mea-
sured in channel C, cyan are the losses measured in channel, D and magenta is
the PCT readings)

5

Looking at fig. 1 and fig. 2 we can conclude that:

• To see a real correlation between lifetime loss and PCT reading we need
to discount injection which distorts the results. Thus, from now on I did
not measure during injection.

• To see a better correlation, a measurement over a longer period of time is
necessary

3 How the lifetime is beam currently calculated

The relationship between lifetime and beam current is [6]:

τ = − I
dI
dt

(1)

The lifetime calculated using Eq. (1) is compared to the lifetime computed on
the EPICS channels ARIDI-PCT:TAU-HOUR. A moving average was used to
smooth the lifetime calculated with the beam current.

(a) (b)

Figure 3: Figures of lifetime calculated with current of the stored beam as
measured by PCT reading

Figure 3a shows that the lifetime given by the EPICS channel is almost the
same as the one we calculated with the PCT readings. Figure 3b shows that
the difference between the EPICS channel and the lifetime calculated, without
any injection, is constant around 2.5%

4 Noise measurement

We measured the background noise of the sensors without any beam in the ac-
celerator and a gain of 0.4. An analysis of its spectral content and an attempt
to filter the signal were done by calculating the PSD and the integrated PSD
and finding a good filter. The fast loss monitor were the only beam loss moni-
tor studied since the slow ones have too low sampling frequency (3 Hz) to have
a good spectral analysis. The EPICS channel and the data taking code were

6

(a) Power spectral density
(b) Integrated PSD channel A for differ-
ent filters

Figure 4: Noise analysis

limiting the sampling rate to a maximum of 24Hz.

Fig. 4a and fig. 4b reveal that most of the noise is within 0Hz to 2Hz .
Furthermore ,fig. 4b shows that by simply cutting the frequencies under 2Hz
more than 75% of the noise has been deleted. Nevertheless since the measure-
ment frequency was only 24Hz we cannot see the behavior of the sensor at high
frequencies. To check if the noise is effectively at low frequencies, we will filter
the signal with a cutting frequency fc=10Hz

Figure 5: Noise signal and filtered signal

7

Figure 5 shows that almost all the noise has been filtered and evidently the
background noise for the fast loss monitor is at low frequencies only.

5 First attempt to compute the lifetime with
beam loss monitor

In order to compute the lifetime with the beam loss monitor, a measurement
session was organised. We change the lifetime in different ways and observed
the behavior of the slow and fast loss monitors:

• First measurement: Changing horizontal chromaticity from 6 to 1 gradu-
ally to change the lifetime of the machine

• Second measurement: Changing the vertical chromaticity from 3.5 to 6
gradually (the measurement width is smaller for reasons of machine sta-
bility)

• Third measurement: Changing the horizontal tune from 0.38 to 0.46 grad-
ually to reach the half integer resonance

• Fourth measurement: Changing the horizontal tune from 0.38 to 0.26
gradually to reach the third order resonance

5.1 First measurement: Changing horizontal chromaticity

This measurement involves changing horizontal chromaticity from 6 to 1 to
change the lifetime of the machine.
To change horizontal chromaticity: ARIMA-OPTIC:CX-SHIFT
To record data from loss monitors: ARIDI-BLM10:SigSa.A-D and ARIDI-BLM01-
4:LOSS1-11
A record of lifetime, beam current and its derivative and chromaticity is also
necessary.

5.1.1 Impact of the change of horizontal chromaticity

The change of horizontal chromaticity has a large impact on loss and lifetime.
Figure 6 shows that between a chromaticity of 2 and 5 the behaviors of loss and
lifetime are linear with chromaticity. Where outside this linear range, instabili-
ties begin. A linear fit [3] of this range shows that the linear behavior of fast loss
monitor and lifetime with horizontal chromaticity is linked to the stability of the
machine. Furthermore fig. 6 reveals that the slow loss monitor are not sensitive
to these changes. This graph also shows that the nominal chromaticity of 5 is
not optimizing lifetime and loss and that with a lower chromaticity a significant
increase of lifetime would be possible. The table in fig. 7 demonstrate that it is
possible, for a beam current of 150mA, to increase the lifetime by 4 hours with
a chromaticity of 3.11 and avoid the instabilities of a too low chromaticity. The

8

Figure 6: Impact of the change of horizontal chromaticity

9

main problem is that these experiments were done at ≈ 150mA. Therefore we
cannot conclude that at ≈ 400mA the instabilities will be absent.

Figure 7: Table of values for a change of horizontal chromaticity

5.1.2 Fit of lifetime with loss

After a data analysis (moving average, deleting the peaks that were not relevant,
computing the correlation between lifetime and all loss monitors) a fit of the
lifetime with the loss is then possible. The most correlated loss monitors are
the fast monitors and especially the channel A. A fit for the channel A of fast
loss monitor (LA) gives the following result:

τfit = 28.4± 0.2− (3.10× 10−3 ± 7.2× 10−5) ∗ LA (2)

With a R2=0.964, a mean squared error MSE=0.20 and a mean absolute error
MAE=0.34 The fig. 8b shows the residuals of the fit. To compute it the following
formula is used:

∆ = τEpics − τfit. (3)

The more the curve is near 0 and evenly distributed around zero the more it is
accurate. Figure 8b illustrate that at low and high loss the fit is less accurate.
In fig. 8 it can be seen that the for a specific change of horizontal chromaticity
it is possible to compute the lifetime with a beam loss monitor with a small
uncertainty on the fit, and that there is a linear relationship between the two of
them. The linear relationship only work on a certain range where loss are not
to high.

10

(a) Comparison of simple linear regres-
sion with LA and value measured (b) Residuals versus loss

Figure 8: Fit of lifetime with loss

5.2 Second measurement: Changing vertical chromaticity

This measurement involves changing the vertical chromaticity from 3.5 to 6 to
change the lifetime of the machine.
To change horizontal chromaticity: ARIMA-OPTIC:CY-SHIFT
To record data from loss monitors: ARIDI-BLM10:SigSa.A-D and ARIDI-BLM01-
4:LOSS1-11
A record of lifetime, beam current and its derivative and chromaticity is also
necessary.

5.2.1 Impact of the change of vertical chromaticity

The change of vertical chromaticity has a large impact on loss and lifetime. In
fig. 9 it can be seen that the change of vertical chromaticity doesn’t influence
loss and lifetime in the same way as the changes of the horizontal one. The
stability range for chromaticity is narrower.

A linear fit is performed using the linear part of the curve. It shows that
the part where instabilities occurs is the non-linear part of the curves. Again,
the slow loss monitor are not sensitive to these changes. An optimisation of
chromaticity that would increase lifetime and reduce losses is harder for vertical
chromaticity, since the system is more sensitive to a small change of vertical
chromaticity. The table of values in fig. 10 shows that it is possible to change
the chromaticity to have a better lifetime. However since the machine is more
sensitive to changes of vertical chromaticity than to change of horizontal chro-
maticity at (≈ 150mA), it is highly probable that at a higher beam current (≈
400mA), it won’t be possible to change the vertical chromaticity and keep the
machine stability.

11

Figure 9: Impact of the change of vertical chromaticity

12

Figure 10: Table of values for a change of vertical chromaticity

5.2.2 Fit of lifetime with loss

The most correlated loss monitors are the fast monitors and especially the chan-
nel A. A fit for the channel A of fast loss monitor (LA) gives the following result:

τ = 24.5± 0.5− (2.28 ∗ 10−3 ± 2.1 ∗ 10−4) ∗ LA (4)

With a R2=0.90 a mean squared error MSE=0.07 and a mean absolute error
MAE=0.21

(a) Comparison of simple linear regres-
sion with LA and value measured (b) Residuals versus loss

Figure 11: Fit of lifetime with loss

Figure 11a for a specific change in vertical chromaticity, it is possible to com-
pute the lifetime with a beam loss monitor and that there is a linear relationship
between them. The residuals on fig. 11b illustrate that linear relationship is
a relevant model since they seem evenly distributed around zero Nevertheless,
the fit for a change of vertical chromaticity is less precise than the one for the
horizontal chromaticity. It is certainly due to the fact that the range of stability
for the vertical chromaticity is narrower than the horizontal one.

13

5.3 Third measurement: Changing the horizontal tune

This measurement involves changing the Horizontal tune from 0.38 to 0.46 to
reach the half-integer resonance.
To record data from loss monitors: ARIDI-BLM10:SigSa.A-D and ARIDI-BLM01-
4:LOSS1-11.
A record of lifetime, beam current and its derivative and of the tune is also
necessary.

5.3.1 Impact of the change of horizontal tune

The change of tune has an impact on loss ,lifetime and beam current. We tried
to approach the half integer resonance to reduce the lifetime and thus increase
the loss. Figure 12 and fig. 13 show a plot of lifetime, beam current, and the
values of the sum of all the fast loss monitors over the ring and the value of
the sum of all the slow loss monitors over the ring with respect to tune. It is
necessary to separate the resonant and non-resonant part of the curves to see
what happens during these two moments. Figure 12 shows the behavior of the
measured parameters when the resonance is not yet reached. Where fig. 13
shows the change of these parameters when the resonance is reached.

Figure 12: Impact of the change of horizontal tune

14

Figure 13: Impact of the change of horizontal tune during resonance

Figure 12 demonstrates that the behavior of the slow and fast monitor isn’t
the same with the tune. It shows that the loss are indeed localised and that
a change of tune will affect at first the location of the fast sensor. Indeed it
shows that an increase of loss for a sensor doesn’t directly mean a decrease of
lifetime, because another loss monitor could decrease at the same time. Here
the slow loss monitors are also sensitive to this changes of horizontal tune which
was not the case during the two previous measurements. The change of lifetime
during the resonance is not due to Touschek scattering. Thus, it is not possible
to compute simply the Touschek lifetime during resonance.

5.3.2 Fit of lifetime with loss

The most correlated loss monitors are this time the slow monitors and espe-
cially the one in arc 3 (CMOS1L9). A fit for the most correlated slow monitor
(CMOS1L9) gives the following result:

τ = 16.9± 0.21− (2.55 ∗ 10−2 ± 1.23 ∗ 10−3) ∗ CMOS1L9 (5)

With R2=0.89, a mean absolute error MAE=0.65 and a mean squared error
MSE=1.12
To perform this fit the resonant part has been ignored. The fit was only per-
formed on the non-resonant part. Thus the Touschek scattering has more effect
on the change of lifetime than during resonance (we still cannot conclude that
the lifetime is mostly Touschek). The fit for a change of horizontal tune are less
precise than the ones on chromaticity and especially in this experiment when we

15

(a) Comparison of linear regression and
value measured (b) Residuals versus loss

Figure 14: Fit of lifetime with loss

approach a tune of 0.46. The relationship between this loss monitor and lifetime
cannot be model by a linear formula. Figure 14b shows residuals far from 0 and
unequally distributed around zero. Figure 14a demonstrate the relationship is
not linear between this sensor and lifetime for a change of tune.

5.4 Fourth measurement: Changing the horizontal tune

This measurement involves the horizontal tune from 0.38 to 0.26 to reach the
sum resonance. Indeed the vertical tune is around 0.73.
To record data from loss monitors: ARIDI-BLM10:SigSa.A-D and ARIDI-BLM01-
4:LOSS1-11
A record of lifetime, beam current and its derivative and of the tune is also
necessary.

5.4.1 Impact of the change of horizontal tune

The change of tune has impact on loss, lifetime and PCT reading. Since we try
to approach the sum resonance the losses increase and the lifetime consequently
decrease. Figure 15 and fig. 16 show a plot of lifetime, beam current, and the
values of the sum of all the fast loss monitors over the ring and the value of
the sum of all the slow loss monitors over the ring with respect to tune. It
is necessary to separate the resonant and non-resonant part of the curve to
understand the behavior of these variables. Figure 15 shows the behavior of
these parameters when the resonance is not yet reached. Where fig. 16 shows
the change of these parameters the resonance when the resonance is reached.

16

Figure 15: Impact of the change of horizontal tune

Figure 16: Impact of the change of horizontal tune during resonance

17

Figure 15 demonstrate that the behavior of the slow and fast monitor isn’t
the same with the tune. The fast loss monitors seems to have a linear relation-
ship with the change of the tune when we avoid the resonance while the slow
monitor seem to stay constant until the resonance. However the behavior of the
lifetime with tune shows directly that the fast loss monitor is better correlated
than the slow ones. During resonance in fig. 16 the correlation between fast
losses and lifetime is still clear. But the slow loss monitor is also becoming more
correlated to lifetime. It shows that even for fast changes in losses, if these loss
are high enough the slow loss monitor will become correlated to the lifetime.

5.4.2 Fit of lifetime with loss

The most correlated loss monitors are the fast monitors and especially the chan-
nel A. A fit for the channel A of fast loss monitor (LA) gives the following result:

τ = 17.6± 0.17− (8.59 ∗ 10−4 ± 2.06 ∗ 10−5) ∗ LA (6)

With R2=0.79, a mean absolute error MAE=0.62 and a mean squared error
MSE=1.26 To perform this fit we also ignored the resonant part and we can see

(a) Comparison of linear regression and
value measured (b) Residuals versus loss

Figure 17: Fit of lifetime with loss

that for this experiment the fit is also less accurate than the ones on chromaticity.
The unequally distributed residuals in fig. 17b and the comparison between
the fit and the EPICS channel lifetime also illustrate that the relationship loss
monitors and lifetime is not linear during a change of tune.

18

6 Fit of the lifetime on nominal values

6.1 Test of the fits done during the shift

Let’s test the models that we have determined during the four measurement
from section 5, on data of loss and lifetime acquired passively on the machine
during user operation. The objective is to compare the lifetime given by these
fits to the lifetime given by the machine.

Figure 18: Comparison between the models from the shift and nominal data

Figure 18 shows that these models are too sensitive and most of the fits give
always wrong values for the lifetime during user operation.

6.2 Using data acquired passively during user operation

The fits on the lifetime with the experimental data don’t work on nominal data.
This is due to two things: the beam current for the experiment was lower than
the nominal beam current, and moreover losses generated by the change of tune
or chromaticity are not the same as losses during normal operation. A fit on
nominal data acquired passively in the control room over several hours was
performed, and to ensure the independence of the beam current value on the fit
it was necessary to normalize each loss by the beam current. By looking at the
most correlated loss monitors with respect to lifetime, we see that the slow loss

19

monitors are more correlated and especially the sensors near the undulator like
CMOS1L11 or CMOS2L1 thus by performing a fit with CMOS1L11 we have:

τ = 12.39± 0.005− (0.163± 0.001) ∗ CMOS1L11

I
(7)

This fit permits to compute the Touschek lifetime during normal operation in
faster way than the lifetime directly computed by the EPICS channel. Indeed,
during normal operation the Touschek lifetime is dominant and we can state
that τtousch ≈ τ . A proof of this will be given at the end of section 7.

(a) Lifetime versus time (b) Residuals versus time

Figure 19: Fit of lifetime from loss

6.3 How the data is processed ?

The dataset used for this fit contained 785586 elements. A data processing is,
therefore, important to eliminate outliers that could distort the results of the
regression. Four methods were used on after the other to process the data:

• The fact that values are not measured during injection doesn’t insure that
the sensors had the time just before an injection to go back to normal
values. It is then important to delete every value for which the derivative
of PCT reading is positive.

• It is important to delete all the values for which the lifetime calculated by
the EPICS channel is the same. To make sure that for two same values of
lifetime we don’t have two different values of loss.

• A moving average is used to smooth the signal of the sensors.

• Finally a normalisation by PCT reading was done to insure the indepen-
dence of the loss monitor with respect to beam current

At the end of this data processing the dataset contained 737 elements and the
fit was computed from these values. The model was then used on a different set
of raw data, acquired after the fitting, to test its accuracy fig. 19a.

20

7 Fifth measurement: Change of the beam size

A last experiment was done to measure Touschek lifetime and gas scattering
lifetime. To measure Touschek lifetime we excited the beam at the tune fre-
quency with a signal generator linked to the multi-bunch feedback. We changed
the gain of the multi bunch feedback from 100% to 0% in several steps. This
changed the beam size from 40 µm to 170 µm. This same measurement was
done three times, because a linear change of gain didn’t imply a linear change
of forward power. Thus different ways to change the gain were tried.

• First, scanning the gain linearly from 100% to 0% with 80 points

• Second, scanning the gain linearly from 80% to 0% with 80 points because
the forward power didn’t change from a gain of 100% to 80%

• Third, scanning the gain on a logarithmic scale from 80% to 0% with 80
points to counter the non-linear change of forward power

7.1 Measurement of gas scattering lifetime and Touschek
lifetime

We state that gas scattering lifetime is constant during the measurement. When
the beam size is really large the space between all particles is larger and the
scattering between particles has less importance on the loss,thus τtousch ≫ τgas.
Therefore most of the lifetime would be gas scattering lifetime for an infinite
beam size. It is then possible to compute the Touschek lifetime with this equa-
tion [6]:

1

τ
=

1

τTousch
+

1

τgas
(8)

And consequently:

τTousch =
1

1
τ − 1

τgas

(9)

This measurement involves a change of beam size from 40 µm to 170 µm. How-
ever when the beam size is small between 40µm to 60 µm. It is not possible
to be sure that the beam size measurement is right and not modified by the
oscillation of the beam. Thus all the fits were performed from 60 µm to 170
µm. To know the lifetime for an infinite beam size, fit the inverse of lifetime
with respect to the beam size. For each measurement two methods to determine
gas scattering lifetime and Touschek lifetime were used:

• Doing a fit on the lifetime given by the EPICS channel

• Doing a fit on a lifetime calculated directly with beam current using Eq.
(1)

21

7.2 Using the lifetime given by the EPICS channel

7.2.1 First measurement

The fit for this measurement shows the following relationship:

1

τ
= 1.18 ∗ 10−2 ± 2.24 ∗ 10−4 +

2.03± 3.43 ∗ 10−2

Y
(10)

With a R2=0.975, a mean absolute error MAE= 3.79*10−4 and a mean squared
error MSE=6.65*10−7

(a) Inverse lifetime vs beam size (b) Residuals of lifetime versus beamsize

Figure 20: Fit of lifetime with respect to beam size

As the residuals in fig. 20b show, ignoring small beam size does change the
fit that approximate the data and thus the gas scattering lifetime. The gas
scattering lifetime is then:

τgas =
1

1.18 ∗ 10−2
= 84.7h± 3.3h (11)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (5.39 ∗ 10−1 ± 3.05 ∗ 10−3) ∗ Y − (6.19± 4.29 ∗ 10−1) (12)

With a R2=0.995, a mean absolute error MAE= 1.48 and a mean squared error
MSE=3.29.
As expected there is almost a linear relationship between the Touschek lifetime
and the beam size fig. 21a. The residuals fig. 21b shows that the fit is well
approximating the data, except for large beam size. Furthermore by looking at
the Touschek lifetime for a forward power P=0 it is possible to determine the
Touschek lifetime during normal operations.

τTouschnominal
= 14.08h± 0.09h (13)

22

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 21: Fit of Touschek lifetime with respect to beam size

7.2.2 Second measurement

The fit for this measurement shows the following relationship:

1

τ
= 9.70 ∗ 10−3 ± 1.38 ∗ 10−4 +

2.38± 2.05 ∗ 10−2

Y
(14)

With a R2=0.994, a mean absolute error MAE= 3.03*10−4 and a mean squared
error MSE=1.83*10−7

(a) Inverse lifetime vs beam size (b) Residuals of lifetime versus beam size

Figure 22: Fit of lifetime with respect to beam size

23

As the residuals fig. 22b show, ignoring small beam size does change the
fit that approximate the data and thus the gas scattering lifetime. The gas
scattering lifetime is then:

τgas =
1

9.70 ∗ 10−3
= 103.1h± 3.09h (15)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (4.19 ∗ 10−1 ± 2.01 ∗ 10−3) ∗ Y − 1.11± 2.72 ∗ 10−1 (16)

With a R2=0.995, a mean absolute error MAE=0.98 and a mean squared error
MSE=1.51

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 23: Fit of Touschek lifetime with respect to beam size

As expected there is almost a linear relationship between the Touschek lifetime
and the beam size fig. 23a. The residuals fig. 23b shows that the fit is well
approximating the data, except for large beam size. Furthermore by looking at
the Touschek lifetime for a forward power P=0 it is possible to determine the
Touschek lifetime during normal operations.

τTouschnominal
= 14.18h± 0.06h (17)

7.2.3 Third measurement

The fit for this measurement shows the following relationship:

1

τ
= 7.98 ∗ 10−3 ± 8.56 ∗ 10−5 +

2.59± 9.95 ∗ 10−3

Y
(18)

With a R2=0.994, a mean absolute error MAE= 5.03*10−4 and a mean squared
error MSE=4.20*10−7.

24

(a) Inverse lifetime vs beam size (b) Residuals of lifetime versus beam size

Figure 24: Fit of lifetime with respect to beam size

As the residuals fig. 24b show, ignoring small beam size does change the fit that
approximate the data and thus the gas scattering lifetime. The gas scattering
lifetime is then:

τgas =
1

7.98 ∗ 10−3
= 125.3h± 2.6h (19)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (3.94 ∗ 10−1 ± 2.19 ∗ 10−3) ∗ Y − 1.48± 1.35 ∗ 10−1 (20)

With a R2=0.996, a mean absolute error MAE=0.75 and a mean squared error
MSE=1.14

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 25: Fit of Touschek lifetime with respect to beam size

25

As expected there is almost a linear relationship between the Touschek life-
time and the beam size fig. 25a. The residuals fig. 25b show that the fit is well
approximating the data, except for large beam size. Furthermore by looking at
the Touschek lifetime for a forward power P=0 it is possible to determine the
Touschek lifetime during normal operations.

τTouschnominal
= 14.27h± 0.03h (21)

7.2.4 Conclusion on these three fits

Using a logarithmic scale for the change of gain on the multi-bunch feedback
permits to have a well distributed beam size for the fit. The values of Tou-
schek lifetime with there error seem similar for each measurement. However
the gas scattering lifetime has the same magnitude but the value seem far from
each other. Nevertheless it doesn’t modify the total lifetime significantly since

1
taugas

≈ 1 ∗ 10−2 for all of the measurements.

7.3 Using the lifetime calculated with the beam current

The fit is done with Eq.(1) on the raw data. Indeed the only advantage of
using PCT reading for the computation of lifetime is the high sampling rate of
this channel, which insure the independence of each values. Thus it wouldn’t
be useful to do a moving average on those data, because it would only give
the same result as EPICS lifetime. We would loose the advantage of the PCT
reading.

7.3.1 First Measurement

The fit for this measurement shows the following relationship:

1

τ
= 5.23 ∗ 10−3 ± 6.61 ∗ 10−4 +

3.06± 8.42 ∗ 10−2

Y
(22)

With a R2=0.74, a mean absolute error MAE= 3.31*10−3 and a mean squared
error MSE=1.54*10−5

26

(a) Inverse lifetime versus beam size (b) Residuals of lifetime versus beam size

Figure 26: Fit of lifetime with respect to beam size

Figure 26b show that even by only taking data from 60µm to 170µm the
fit is giving good and evenly distributed residuals around zero for all beam
sizes. Thus the gas scattering lifetime has not been changed by the fact that we
ignored small beam size. The gas scattering lifetime is then:

τgas =
1

5.23 ∗ 10−3
= 191.2h± 39.4h (23)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (3.28 ∗ 10−1 ± 1.13 ∗ 10−2) ∗ Y + 2.49 ∗ 10−1 ± 6.88 ∗ 10−1 (24)

With a R2=0.0.786, a mean absolute error MAE= 6.0 and mean squared error
MSE=74.0

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 27: Fit of Touschek lifetime with respect to beam size

As expected there is almost a linear relationship between the Touschek life-
time and the beam size fig. 27a. Nevertheless as seen with the values of un-

27

certainties on the intercept of the fit and at MAE and MSE the fit isn’t giving
usable data. Indeed since the standard deviation of the Touschek lifetime espe-
cially for long beam size is big it is hard for the script to find a fit minimising
the uncertainties. Furthermore by looking at the Touschek lifetime for a for-
ward power P=0 it is possible to determine the Touschek lifetime during normal
operations.

τTouschnominal
= 13.4h± 0.2h (25)

7.3.2 Second Measurement

The fit for this measurement shows the following relationship:

1

τ
= 5.01 ∗ 10−3 ± 4.88 ∗ 10−4 +

3.06± 5.96 ∗ 10−2

Y
(26)

With a R2=0.779, a mean absolute error MAE= 2.86*10−3 and a mean squared
error MSE=1.30*10−5

(a) Inverse lifetime versus beam size (b) Residuals of lifetime versus beam size

Figure 28: Fit of lifetime with respect to beam size

Figure 28b show that even by only taking data from 60µm to 170µm the fit
is giving good and evenly distributed residuals around zero for all beam sizes.
Thus the gas scattering lifetime has not been changed by the fact that we ignored
small beam size. The gas scattering lifetime is then:

τgas =
1

5.01 ∗ 10−3
= 199.7h± 35.8h (27)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (3.23 ∗ 10−1 ± 8.84 ∗ 10−3) ∗ Y + 3.7 ∗ 10−1 ± 6.8 ∗ 10−1 (28)

With a R2=0.727, a mean absolute error MAE= 5.7 and a mean squared error
MSE=71.6

28

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 29: Fit of Touschek lifetime with respect to beam size

As expected there is almost a linear relationship between the Touschek life-
time and the beam size fig. 29a. Nevertheless as seen with the values of un-
certainties on the intercept of the fit and at MAE and MSE the fit isn’t giving
usable data. Indeed since the standard deviation of the Touschek lifetime espe-
cially for long beam size is big it is hard for the script to find a fit minimising
the uncertainties. Furthermore by looking at the Touschek lifetime for a for-
ward power P=0 it is possible to determine the Touschek lifetime during normal
operations.

τTouschnominal
= 13.9± 0.2 (29)

7.3.3 Third Measurement

The fit for this measurement shows the following relationship:

1

τ
= 6.33 ∗ 10−3 ± 5.57 ∗ 10−4 +

3.02± 5.66 ∗ 10−2

Y
(30)

With a R2=0.87, a mean absolute error MAE= 2.90*10−3 and a mean squared
error MSE=1.27*10−5

29

(a) Inverse lifetime versus beam size (b) Residuals of lifetime versus beam size

Figure 30: Fit of lifetime with respect to beam size

Figure 30b show that even by only taking data from 60µm to 170µm the
fit is giving good and evenly distributed residuals around zero for all beam
sizes. Thus the gas scattering lifetime has not been changed by the fact that we
ignored small beam size. The gas scattering lifetime is then:

τgas =
1

6.33 ∗ 10−3
= 158.0h± 29.7h (31)

It is then possible to compute the Touschek lifetime using Eq.(8):

τtousch = (2.97 ∗ 10−1 ± 9.57 ∗ 10−3) ∗ Y + 1.35± 4.94 ∗ 10−1 (32)

With a R2=0.9, a mean absolute error MAE= 2.5 and a mean squared error
MSE=19.8

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 31: Fit of Touschek lifetime with respect to beam size

As expected there is almost a linear relationship between the Touschek lifetime
and the beam size fig. 31a. This time the error on the fit is significantly

30

smaller and the R2 bigger. It is certainly due to the way we changed the gain
on this third experiment.Scanning the gain on logarithmic scale has certainly
countered the non-linear changes of forward power with respect to gain. And
distributed the PCT reading in a better way. Indeed since the sampling rate of
the PCT reading is bigger than the one for the lifetime channel, the way we scan
may seems to have more importance on how the fit is computed. Furthermore
by looking at the Touschek lifetime for a forward power P=0 it is possible to
determine the Touschek lifetime during normal operations.

τTouschnominal
= 13.7h± 0.2h (33)

7.3.4 Conclusion on these three fits

Using the lifetime calculated with PCT reading is useful because the sampling
rate of the beam current is way higher than the one on the lifetime channel.
Consequently, we are confident that each values are independent of each others.
However, the lifetime calculated with the beam current is fluctuating more which
implies a higher error on every fit and every measurement. Which leads to
values for gas scattering lifetime and touschek lifetime that are more fluctuating.
Finally the way we change the gain affects more the results when the lifetime
is calculated with beam current. Scanning the gain on logarithmic scale is
probably a good way to reduce these fluctuation of lifetime during measurement.

7.4 Using the three measurement merged for a fit

In this section, the data from the three experiments are merged to perform
a linear regression to compute Touschek lifetime. The sections before showed
that to compute with a fit more accurately the gas scattering lifetime, only the
large beam sizes are important. Thus the gas scattering lifetime was computed
by fitting the inverse lifetime with beam size for a beam size from 100µm to
140µm. After a test it shows that when the fit is done with the PCT reading the
regression is not possible to compute. The way the gain was changed did affect
to much the data when merged. Nevertheless for a fit on the lifetime given by
the EPICS channel results where better than the the measurement separately.

The fit for this measurement shows the following relationship:

1

τ
= 1.13 ∗ 10−2 ± 2.14 ∗ 10−5 +

2.113± 3.22 ∗ 10−3

Y
(34)

With a R2=0.998, a mean absolute error MAE= 5.74*10−5 and a mean squared
error MSE=5.44*10−9

31

(a) Inverse lifetime vs beam size (b) Residuals of lifetime versus beam size

Figure 32: Fit of lifetime with respect to beam size

As the residuals fig. 32b shows it, ignoring small beam size does change the
fit that approximate the data and thus the gas scattering lifetime. The MSE
and MAE and the uncertainties on the fit are lower than on the previous fits.
The gas scattering lifetime is then:

τgas =
1

9.70 ∗ 10−3
= 88.1h± 0.3h (35)

The gas scattering lifetime is given with a lower uncertainty which shows that
looking only at large beam size improve the accuracy of the result. It is then
possible to compute the Touschek lifetime using Eq.(8):

τtousch = (5.12 ∗ 10−1 ± 4.22 ∗ 10−4) ∗ Y − 5.83± 4.60 ∗ 10−2 (36)

With a R2=0.999, a mean absolute error MAE=0.452 and a mean squared
error MSE=0.387

(a) Touschek lifetime vs beam size
(b) Residuals of Touschek lifetime versus
beam size

Figure 33: Fit of Touschek lifetime with respect to beam size

32

As expected there is almost a linear relationship between the Touschek lifetime
and the beam size fig. 33a. The residuals fig. 33b shows that the fit is well
approximating the data, except for large beam size. The error on the fit is
lower and R2 is bigger. Furthermore by looking at the Touschek lifetime for
a forward power P=0 it is possible to determine the Touschek lifetime during
normal operations.

τTouschnominal
= 14.052h± 0.008h (37)

To conclude, the gas scattering lifetime is then, when using the merged
data 88 hours which is a significant change. To improve this measurement it is
necessary to look at a larger beam size and compute all the fits on a short range
around the maximum beam size measured. Moreover the Touschek lifetime
remains the same around 14 hours for each measurements. It shows that that
the Touschek lifetime is indeed around 14 hours at SLS during user operation.
Fits on Touschek lifetime with respect to loss Touschek lifetime was done during
the data analysis but in the case of nominal data, the test did not yield conclusive
results. All the figure are presented in appendix.

8 Uncertainty on the fits

The bootstrap method was used to get the uncertainties on the intercepts and
coefficients of the regression because the library used for the regression couldn’t
give directly these values. The core of the uncertainty calculation lies in the
bootstrap resampling loop [4, 5]. This loop is designed to estimate the un-
certainties associated with the regression coefficients and intercept. It involves
several important steps.

During each iteration of the loop, a new training dataset is created by resam-
pling the original training data with replacement. This means that observations
are randomly selected from the original dataset, and some observations may be
chosen multiple times while others may not be included at all. In our case we
test bootstrapping with 1000, 10 000 and 1 000 000 iterations. What we can
conclude is that the result was roughly the same after a number of iteration
bigger than 10 000. Thus for script efficiency reasons we limited ourselves to 10
000 iterations

Subsequently, a linear regression model is fitted on the bootstrapped training
dataset. This means that a regression line is calculated based on the relationship
between the independent variable (CMOS1L11 in this case) and the dependent
variable (tau). The coefficients of the regression line, as well as the intercept,
are recorded for each iteration.

After all the iterations are completed, the standard deviations of the coeffi-
cient samples and intercept samples are computed. These standard deviations
represent the uncertainties associated with the regression coefficients and inter-
cept.

33

Then we use the formula of the propagation of uncertainties to have the uncer-
tainty on the predicted lifetime. If we note the linear equation followed by our
model τ = a× L

I + b and there uncertainties with ∆ The error on the fit is:

∆τpredicted = τpredicted ×
√

(
∆a

a
)2 + (

∆L

L
)2 + (

∆I

I
)2 +∆b (38)

9 Conclusion

With these measurement we can conclude that:

• The fast loss monitor are better to compute lifetime and beam current
during experiments and the slow ones during user operation

• The chromaticity may be not optimized at SLS and could be lowered to
increase lifetime if we stay in the stable range of chromaticity

• The loss monitors and lifetime are less correlated during a change of tune
and especially near the resonance. And the relationship between the two
seems non-linear for a change of horizontal tune from 0.38 to 0.46

• It is possible to compute lifetime and beam current with loss monitors,
however the experiment shows that loss monitors don’t behave in the same
way during normal operation and experiments

• To compute lifetime with a loss monitor more precisely it is necessary to
normalize loss by beam current.

• Finally at SLS, the Touschek lifetime during normal operation is 14h and
the gas scattering lifetime is 88h

Further steps to improve this study are:

• Repeat measurement of lifetime and loss while changing horizontal chro-
maticity at nominal beam current to find the optimized chromaticity of
the machine

• Repeat measurement of lifetime versus beam size with a wider range of
beam sizes to have a more precise value of gas scattering lifetime.

34

References

[1] L. Torino K.B. Scheidt, New beam loss detector system for EBS-ESRF,
Grenoble, https://accelconf.web.cern.ch/ibic2018/papers/weob01.pdf

[2] Jan Chrin tutorial for pycafe, SLS, http://cafe.psi.ch/cython.html

[3] Wei-Meng Lee, Python Machine Learning April, 2019

[4] Ethan wicker, Bootstrap Resampling, CERN Feb 2021,
https://ethanwicker.com/2021-02-23-bootstrap-resampling-001/

[5] Evaluating statistical uncertainties and correlations using the bootstrap
method ,September 2021, http://cds.cern.ch/record/2759945/files/ATL-
PHYS-PUB-2021-011.pdf?version=2

[6] B. Nash, F. Ewald, L. Farvacque, J. Jacob, E. Plou-
viez, J.L. Revol, K. Scheidt, Touschek lifetime and momen-
tum acceptance measurements for ESRF, San Sebastian 2011
https://accelconf.web.cern.ch/ipac2011/papers/thpc008.pdf

35

10 Appendix

10.1 Figures of Tosuchek lifetime vs Loss

Figure 34: inverse of Touschek lifetime vs sum of fast loss

36

Figure 35: inverse of Touschek lifetime vs LA

Figure 36: inverse of Touschek lifetime vs LB

37

Figure 37: inverse of Touschek lifetime vs CMOS1L9

10.2 Scripts

-*- coding: utf -8 -*-

"""

Created on Thu Jun 15 16:15:54 2023

@author: elyama_y

This script processes the data collected to improve the

results of a fit.

"""

import numpy as np

import os

==================================

extract the data from files

==================================

Define the list of file names to read

files_names = [

"lifetime.txt", "dPCT.txt", "beam current.txt", "LA.txt"

, "LB.txt", "LC.txt", "LD.txt",

"CMOS1L1.txt", "CMOS1L2.txt", "CMOS1L3.txt", "CMOS1L4.

txt", "CMOS1L5.txt", "CMOS1L6.txt",

38

"CMOS1L7.txt", "CMOS1L8.txt", "CMOS1L9.txt", "CMOS1L10.

txt", "CMOS1L11.txt", "CMOS2L1.txt",

"CMOS2L2.txt", "CMOS2L3.txt", "CMOS2L4.txt", "CMOS2L5.

txt", "CMOS2L6.txt", "CMOS2L7.txt",

"CMOS2L8.txt", "CMOS3L1.txt", "CMOS3L2.txt", "CMOS3L3.

txt", "CMOS3L4.txt", "CMOS3L5.txt",

"CMOS3L6.txt", "CMOS3L7.txt", "CMOS4L1.txt", "CMOS4L2.

txt", "CMOS4L3.txt", "CMOS4L4.txt",

"CMOS4L5.txt", "CMOS4L6.txt", "CMOS4L7.txt", "CMOS4L8.

txt", "CMOS4L9.txt", "CMOS4L10.txt",

"CMOS4L11.txt", "tchroma_vs_lifetime.txt"

] # files_names should always respect 2 rules for the

program to work

the last file should always be time

put all the parameters that are not loss monitors at the

beginning and then loss monitors

data_liste = [[] for _ in range(len(files_names))]

Initialize the directory path

directory = "C:/ Users/elyama_y/Desktop/Data/tmp"

Get the folder name from user input

folder_name = input("folder name : ")

Create the full directory path

directory = os.path.join(directory , folder_name)

Read data from files and store in respective lists

for i, file_name in enumerate(files_names):

chemin_fichier = os.path.join(directory , file_name)

with open(chemin_fichier , "r") as fichier:

contenu = fichier.readlines ()

data_liste[i]. extend ([float(ligne.strip()) for ligne in

contenu])

==================================

deleting injection

==================================

Get the length of the LA list

n = len(data_liste [0])

Generate a list of indices in reverse order

indices = list(range(n - 1, 0. -1))

Filter indices to remove based on the sign of the

derivative of beam current

index_dPCT = files_names.index("dPCT.txt")

39

indices_to_remove = [i for i in indices if data_liste[

index_dPCT] >= 0]

remove values during injection

def remove_injec(A):

for i in indices_to_remove:

A.pop(i)

for i in data_liste:

remove_injec(i)

==================================

remove the same values of lifetime

==================================

index_tau = files_names.index("lifetime.txt")

def index_deleted(liste):

unique_elements = []

deleted_index = []

for index , element in enumerate(liste):

if element not in unique_elements:

unique_elements.append(element)

else:

deleted_index.append(index)

deleted_index.sort(reverse=True)

return deleted_index

def delete_duplicate(A, B):

for i in A:

B.pop(i)

A = index_deleted(data_liste[index_tau])

for k in range(len(data_liste)):

delete_duplicate(A, data_liste[k])

==================================

Mean over p values

==================================

data_listeM = [[] for _ in range(len(data_liste))]

p = 4

40

def mean(p, A, B):

if len(A) % p == 0:

for i in range (0. len(A), p):

B.append(np.mean(A[i:i + p]))

else:

for i in range(len(A) - 1, len(A) - len(A) % p - 1,

-1):

A.pop(i)

print(len(A))

for i in range (0. len(A), p):

B.append(np.mean(A[i:i + p]))

return B

for k in range(len(data_liste)):

mean(p, data_liste[k], data_listeM[k])

index_LA = files_names.index("LA.txt")

index_t = files_names.index("tchroma_vs_lifetime.txt")

index_PCT = files_names.index("beam current.txt")

==================================

normalize by beam current

==================================

def normalize(A, B):

for i in range(len(A)):

A[i] = A[i] / B[i]

return A

for k in range(index_LA , index_t):

normalize(data_listeM[k], data_listeM[index_PCT])

==================================

rewrite the data on files

==================================

Define the directory to save the files

directory = "C:/ Users/elyama_y/Desktop/Data/tmp"

Prompt the user for the folder name

folder_name = input("Folder name : ")

Create the folder path

folder_path = os.path.join(directory , folder_name)

Create the folder

41

os.makedirs(folder_path)

Write the data arrays to individual text files

for i in range(len(files_names)):

file_path = os.path.join(folder_path , files_names[i])

with open(file_path , "w") as file:

for item in data_listeM[i]:

file.write(str(item) + "\n")

Listing 1: Data processing script

42

-*- coding: utf -8 -*-

"""

Created on Mon Jul 24 09:52:31 2023

@author: elyama_y

This code takes data every sample_period and save each

sensor data on one file

"""

==================================

Libraries

===================================

import time

import PyCafe

import os

import asyncio

cafe = PyCafe.CyCafe ()

cyca = PyCafe.CyCa()

==================================

Parameters

==================================

minute = 60

hour = 3600

total_time = 1 * hour + 30 * minute #Choose the duration of

the datataking

sensors_names = [’ARIDI -TU2:AMP -FWDPWR ’, ’ARIDI -TU2:AMP -

REVPWR ’, ’ARIDI -TU2:RFGAIN -GET’, ’ARIMA -OPTIC:CY-NOM’, ’

ARIMA -OPTIC:CX-NOM’,"ARIMA -OPTIC:CX-SHIFT", "ARIMA -OPTIC:

CY-SHIFT", ’ARIDI -PCT:TAU -HOUR’, ’ARIDI -PCT:CUR -ROCS’, ’

ARIDI -PCT:beam current ’,’ARIDI -BLM10:SigSa.A’] # put the

channel of the sensors you want

files_names = ["Fwd_power.txt", "Rev_power.txt", "Gain.txt",

"Ver_Chroma.txt", "Hor_Chroma.txt", "Hor_Chromashift.txt

",

"Ver_Chromashift.txt", "lifetime.txt", "dPCT.txt", "beam

current.txt", "LA.txt", "tchroma_vs_lifetime.txt"] #

choose there names and add the name of the time variable

put always the time at the end

directory = "/sls/bd/exchange/bd/home/elyama_y/tmp"

folder_name = input("folder name please:") # choose the name

of the folder

directory = directory + "/" + folder_name

sample_period = 1

initial_time = time.time()

43

t = 0

==================================

Coroutines

==================================

async def get_time(initial_time , directory , file_name):

global t

t = time.time() - initial_time

await write_value(directory , file_name , t)

async def get_value(sensor_name , directory , file_name):

value = cafe.get(sensor_name)

await write_value(directory , file_name , value)

async def write_value(directory , file_name , value):

if not os.path.exists(directory):

os.mkdir(directory)

print("The following directory was successfully

created:", directory , "\n")

file_path = directory + "/" + file_name

if os.path.exists(file_path):

with open(file_path , "a") as file:

file.write(str(value) + "\n")

else:

with open(file_path , "w") as file:

file.write(str(value) + "\n")

file_path = os.path.join(directory , file_name)

async def main_task ():

tasks = []

for n in range(len(sensors_names)):

task = get_value(sensors_names[n], directory ,

files_names[n])

tasks.append(task)

await asyncio.gather(get_time(initial_time , directory ,

files_names[len(sensors_names)]), *tasks)

==================================

Main()

==================================

async def main():

global t

44

while t < total_time:

await asyncio.gather(main_task (), asyncio.sleep(

sample_period))

if __name__ == "__main__":

loop = asyncio.get_event_loop ()

try:

loop.run_until_complete(main())

finally:

loop.close ()

Listing 2: Data taking script

-*- coding: utf -8 -*-

"""

Created on Mon Jul 24 10:11:04 2023

Author: elyama_y

This script permit to compute a fit on processed data

"""

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error ,

mean_absolute_error

import numpy as np

import pandas as pd

from sklearn.linear_model import HuberRegressor

import os

from sklearn.linear_model import LinearRegression

from sklearn.utils import resample

==================================

parameters

==================================

Vtune = []

Htuneshift = []

Htune = []

tau = []

dPCT = []

PCT = []

t = []

==================================

Slow BLM

==================================

CMOS1L1 = []

CMOS1L2 = []

45

CMOS1L3 = []

CMOS1L4 = []

CMOS1L5 = []

CMOS1L6 = []

CMOS1L7 = []

CMOS1L8 = []

CMOS1L9 = []

CMOS1L10 = []

CMOS1L11 = []

CMOS2L1 = []

CMOS2L2 = []

CMOS2L3 = []

CMOS2L4 = []

CMOS2L5 = []

CMOS2L6 = []

CMOS2L7 = []

CMOS2L8 = []

CMOS3L1 = []

CMOS3L2 = []

CMOS3L3 = []

CMOS3L4 = []

CMOS3L5 = []

CMOS3L6 = []

CMOS3L7 = []

CMOS4L1 = []

CMOS4L2 = []

CMOS4L3 = []

CMOS4L4 = []

CMOS4L5 = []

CMOS4L6 = []

CMOS4L7 = []

CMOS4L8 = []

CMOS4L9 = []

CMOS4L10 = []

CMOS4L11 = []

CMOSsum = []

==================================

fast BLM

==================================

LA = []

LB = []

LC = []

LD = []

Lsum = []

files_names = ["lifetime.txt", "dPCT.txt", "beam current.txt

46

", "LA.txt", "LB.txt", "LC.txt", "LD.txt", "CMOS1L1.txt",

"CMOS1L2.txt", "CMOS1L3.txt", "CMOS1L4.txt", "CMOS1L5.

txt", "CMOS1L6.txt", "CMOS1L7.txt", "CMOS1L8.txt", "

CMOS1L9.txt", "CMOS1L10.txt", "CMOS1L11.txt", "CMOS2L1.

txt", "CMOS2L2.txt", "CMOS2L3.txt", "CMOS2L4.txt", "

CMOS2L5.txt", "CMOS2L6.txt", "CMOS2L7.txt", "CMOS2L8.txt"

, "CMOS3L1.txt", "CMOS3L2.txt", "CMOS3L3.txt", "CMOS3L4.

txt", "CMOS3L5.txt", "CMOS3L6.txt", "CMOS3L7.txt", "

CMOS4L1.txt", "CMOS4L2.txt", "CMOS4L3.txt", "CMOS4L4.txt"

, "CMOS4L5.txt", "CMOS4L6.txt", "CMOS4L7.txt", "CMOS4L8.

txt", "CMOS4L9.txt", "CMOS4L10.txt", "CMOS4L11.txt", "

tchroma_vs_lifetime.txt"]

data_liste = [tau , dPCT , PCT , LA , LB , LC , LD , CMOS1L1 ,

CMOS1L2 , CMOS1L3 , CMOS1L4 , CMOS1L5 , CMOS1L6 , CMOS1L7 ,

CMOS1L8 , CMOS1L9 , CMOS1L10. CMOS1L11 , CMOS2L1 , CMOS2L2 ,

CMOS2L3 , CMOS2L4 , CMOS2L5 , CMOS2L6 , CMOS2L7 , CMOS2L8 ,

CMOS3L1 , CMOS3L2 , CMOS3L3 , CMOS3L4 , CMOS3L5 , CMOS3L6 ,

CMOS3L7 , CMOS4L1 , CMOS4L2 , CMOS4L3 , CMOS4L4 , CMOS4L5 ,

CMOS4L6 , CMOS4L7 , CMOS4L8 , CMOS4L9 , CMOS4L10. CMOS4L11 , t

]

directory = "C:/ Users/elyama_y/Desktop/Data/tmp"

folder_name = input("Folder name: ")

directory = os.path.join(directory , folder_name)

for i in range(len(files_names)):

chemin_fichier = os.path.join(directory , files_names[i])

fichier = open(chemin_fichier , "r")

contenu = fichier.readlines ()

fichier.close()

data_liste[i]. extend ([float(line.strip()) for line in

contenu])

class Bunch(dict):

def __init__(self , ** kwargs):

super ().__init__(kwargs)

self.__dict__ = self

Calculate the sum of CMOS values for each index position

using zip and list comprehension

CMOSsum = [sum(values) for values in zip(CMOS1L1 , CMOS1L2 ,

CMOS1L3 , CMOS1L4 , CMOS1L5 , CMOS1L6 , CMOS1L7 , CMOS1L8 ,

CMOS1L9 , CMOS1L10. CMOS1L11 , CMOS2L1 , CMOS2L2 , CMOS2L3 ,

CMOS2L4 , CMOS2L5 , CMOS2L6 , CMOS2L7 , CMOS2L8 , CMOS3L1 ,

CMOS3L2 , CMOS3L3 , CMOS3L4 , CMOS3L5 , CMOS3L6 , CMOS3L7 ,

CMOS4L1 , CMOS4L2 , CMOS4L3 , CMOS4L4 , CMOS4L5 , CMOS4L6 ,

CMOS4L7 , CMOS4L8 , CMOS4L9 , CMOS4L10. CMOS4L11)]

47

Calculate the sum of L values for each index position

using zip and list comprehension

Lsum = [La + Lb + Lc + Ld for La, Lb, Lc, Ld in zip(LA, LB,

LC, LD)]

features = np.column_stack ((LA, LB, LC, LD, CMOS1L1 , CMOS1L2

, CMOS1L3 , CMOS1L4 , CMOS1L5 , CMOS1L6 , CMOS1L7 , CMOS1L8 ,

CMOS1L9 , CMOS1L10. CMOS1L11 , CMOS2L1 , CMOS2L2 , CMOS2L3 ,

CMOS2L4 , CMOS2L5 , CMOS2L6 , CMOS2L7 , CMOS2L8 , CMOS3L1 ,

CMOS3L2 , CMOS3L3 , CMOS3L4 , CMOS3L5 , CMOS3L6 , CMOS3L7 ,

CMOS4L1 , CMOS4L2 , CMOS4L3 , CMOS4L4 , CMOS4L5 , CMOS4L6 ,

CMOS4L7 , CMOS4L8 , CMOS4L9 , CMOS4L10. CMOS4L11 , CMOSsum ,

Lsum))

dataset = Bunch(data=features)

feature_names = [’LA’, ’LB’, ’LC’, ’LD’, ’CMOS1L1 ’, ’CMOS1L2

’, ’CMOS1L3 ’, ’CMOS1L4 ’, ’CMOS1L5 ’, ’CMOS1L6 ’, ’CMOS1L7 ’,

’CMOS1L8 ’, ’CMOS1L9 ’, ’CMOS1L10 ’, ’CMOS1L11 ’, ’CMOS2L1 ’,

’CMOS2L2 ’, ’CMOS2L3 ’, ’CMOS2L4 ’, ’CMOS2L5 ’, ’CMOS2L6 ’, ’

CMOS2L7 ’, ’CMOS2L8 ’, ’CMOS3L1 ’, ’CMOS3L2 ’, ’CMOS3L3 ’, ’

CMOS3L4 ’, ’CMOS3L5 ’, ’CMOS3L6 ’, ’CMOS3L7 ’, ’CMOS4L1 ’, ’

CMOS4L2 ’, ’CMOS4L3 ’, ’CMOS4L4 ’, ’CMOS4L5 ’, ’CMOS4L6 ’, ’

CMOS4L7 ’, ’CMOS4L8 ’, ’CMOS4L9 ’, ’CMOS4L10 ’, ’CMOS4L11 ’, ’

CMOSsum ’, ’Lsum’]

df = pd.DataFrame(dataset.data , columns=feature_names)

dataset.target = tau #choose the variable you want to fit

df[’tau’] = dataset.target

df.head()

corr = df.corr()

print(corr)

print(df.corr().abs().nlargest(6, ’tau’).index)

columns = [’LA’] # choose the variable you use to compute

your fit

data = {’LA’: df[’LA’]} # choose the variable you use to

compute your fit

x = pd.DataFrame(data , columns=columns)

Y = df[’tau’]

from sklearn.model_selection import train_test_split

x_train , x_test , y_train , y_test = train_test_split(x, Y,

test_size =0.3, random_state =5)

n_iterations = 1000000 # Number of bootstrap iterations

x[’intercept ’] = 1

coef_samples = np.zeros((n_iterations , x.shape [1])) # x

represents your independent variables

y_pred_samples = np.zeros ((n_iterations , len(y_test)))

intercept_samples = np.zeros(n_iterations) # y_test

48

represents your test dependent values

for i in range(n_iterations):

Bootstrap sampling of data

x_boot , y_boot = resample(x_train , y_train)

Create a linear regression model and train it on the

sampled data

model = LinearRegression ()

model.fit(x_boot , y_boot)

Save the sampled regression coefficients

coef_samples[i] = model.coef_

Make predictions on the sampled test data

y_pred_samples[i] = model.predict(x_test)

intercept_samples[i] = model.intercept_

Calculate uncertainty on regression coefficients

coef_std = 2 * np.std(coef_samples , axis =0)

intercept_std = 2 * np.std(intercept_samples)

Calculate error bars on predicted values

y_pred_mean = np.mean(y_pred_samples , axis =0) # Mean of

sampled predictions

y_pred_std = np.std(y_pred_samples , axis =0) # Standard

deviation of sampled predictions

Calculate mean squared error (MSE)

mse = mean_squared_error(y_test , y_pred_mean)

print("MSE:", mse)

Calculate mean absolute error (MAE)

mae = mean_absolute_error(y_test , y_pred_mean)

print("MAE:", mae)

Display regression coefficients with their uncertainty

for i, coef in enumerate(model.coef_):

print("Coefficient", i, ":", coef , " ", coef_std[i])

print("intercept:", model.intercept_ , " ", intercept_std)

tau_pred = model.predict(x_test)

print(’R-squared :%4f’ % model.score(x_test , y_test))

plt.figure (4)

plt.scatter(y_test , tau_pred)

plt.xlabel("Measured tau")

plt.ylabel(’Predicted tau’)

plt.title(’Predicted tau vs Measured tau for linear

regression on LA’)

a = model.intercept_

b = model.coef_

49

Z = []

for i in range(len(LA)):

k = a + b * LA[i]

Z.append(k)

plt.figure (6)

plt.scatter(LA , tau , label=’Measured tau versus LA loss’)

plt.plot(LA , Z, label=’Predicted tau versus LA loss’)

plt.xlabel("Loss")

plt.ylabel(’Tau in hours’)

plt.legend ()

plt.title(’Comparison of linear regression and the measured

value ’)

plt.show()

Listing 3: fitting script

-*- coding: utf -8 -*-

"""

Created on Fri Jun 2 14:56:20 2023

This script collects data from sensors , performs

measurements , and fits the data

to compute Touschek and gas lifetimes.

Author: elyama_y

"""

==================================

libraries :

==================================

from sklearn.utils import resample

from sklearn.metrics import mean_squared_error ,

mean_absolute_error

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

import time

import PyCafe

from sklearn.linear_model import HuberRegressor

import os

cafe = PyCafe.CyCafe ()

cyca = PyCafe.CyCa()

import asyncio

import pandas as pd

from sklearn.model_selection import train_test_split

==================================

parameters

50

==================================

minute =60

hour =3600

init_time = 25

N = 100

T=20

total_time = init_time + N*T+20

Define gain values

gain = np.round(np.logspace (0 ,1.903,N)[:: -1] ,1) [:74]

List of sensor names and file names to store data

sensors_names = [’X09DA -FE -CCD1:Y-SIG -2’,’ARIDI -TU2:AMP -

FWDPWR ’,’ARIDI -TU2:AMP -REVPWR ’,’ARIDI -TU2:RFGAIN -GET’,’

ARIMA -OPTIC:CY-NOM’,’ARIMA -OPTIC:CX-NOM’,"ARIMA -OPTIC:CX-

SHIFT","ARIMA -OPTIC:CY -SHIFT",’ARIDI -PCT:TAU -HOUR’,’ARIDI

-PCT:CUR -ROCS’,’ARIDI -PCT:CURRENT ’,’ARIDI -BLM10:SigSa.A’,

’ARIDI -BLM10:SigSa.B’,’ARIDI -BLM10:SigSa.C’,’ARIDI -BLM10:

SigSa.D’,’ARIDI -BLM01:LOSS1’,’ARIDI -BLM01:LOSS2’,’ARIDI -

BLM01:LOSS3’,’ARIDI -BLM01:LOSS4’,’ARIDI -BLM01:LOSS5’,’

ARIDI -BLM01:LOSS6 ’,’ARIDI -BLM01:LOSS7 ’,’ARIDI -BLM01:LOSS8

’,’ARIDI -BLM01:LOSS9 ’,’ARIDI -BLM01:LOSS10 ’,’ARIDI -BLM01:

LOSS11 ’,’ARIDI -BLM02:LOSS1 ’,’ARIDI -BLM02:LOSS2 ’,’ARIDI -

BLM02:LOSS3’,’ARIDI -BLM02:LOSS4’,’ARIDI -BLM02:LOSS5’,’

ARIDI -BLM02:LOSS6 ’,’ARIDI -BLM02:LOSS7 ’,’ARIDI -BLM02:LOSS8

’,’ARIDI -BLM03:LOSS1 ’,’ARIDI -BLM03:LOSS2 ’,’ARIDI -BLM03:

LOSS3 ’,’ARIDI -BLM03:LOSS4’,’ARIDI -BLM03:LOSS5’,’ARIDI -

BLM03:LOSS6’,’ARIDI -BLM03:LOSS7’,’ARIDI -BLM04:LOSS1’,’

ARIDI -BLM04:LOSS2 ’,’ARIDI -BLM04:LOSS3 ’,’ARIDI -BLM04:LOSS4

’,’ARIDI -BLM04:LOSS5 ’,’ARIDI -BLM04:LOSS6 ’,’ARIDI -BLM04:

LOSS7 ’,’ARIDI -BLM04:LOSS8’,’ARIDI -BLM04:LOSS9’,’ARIDI -

BLM04:LOSS10 ’,’ARIDI -BLM04:LOSS11 ’]

files_names = ["Y_beamsize.txt","Fwd_power.txt","Rev_power.

txt","Gain.txt","Ver_Chroma.txt", "Hor_Chroma.txt","

Hor_Chromashift.txt","Ver_Chromashift.txt", "lifetime.txt

","dPCT.txt","current.txt","LA.txt", "LB.txt", "LC.txt",

"LD.txt","CMOS1L1.txt", "CMOS1L2.txt", "CMOS1L3.txt", "

CMOS1L4.txt","CMOS1L5.txt","CMOS1L6.txt","CMOS1L7.txt","

CMOS1L8.txt","CMOS1L9.txt","CMOS1L10.txt","CMOS1L11.txt",

"CMOS2L1.txt", "CMOS2L2.txt", "CMOS2L3.txt", "CMOS2L4.txt

", "CMOS2L5.txt", "CMOS2L6.txt", "CMOS2L7.txt", "CMOS2L8.

txt","CMOS3L1.txt", "CMOS3L2.txt", "CMOS3L3.txt", "

CMOS3L4.txt", "CMOS3L5.txt", "CMOS3L6.txt", "CMOS3L7.txt"

,"CMOS4L1.txt", "CMOS4L2.txt", "CMOS4L3.txt", "CMOS4L4.

txt","CMOS4L5.txt","CMOS4L6.txt","CMOS4L7.txt","CMOS4L8.

txt","CMOS4L9.txt","CMOS4L10.txt","CMOS4L11.txt","

tchroma_vs_lifetime.txt"]

51

Define the directory for data storage

directory = "/sls/bd/exchange/bd/home/elyama_y/tmp"

folder_name = input("folder name please :")

directory = directory +"/" + folder_name

Set the sample period and initialize time

sample_period =1.2

initial_time = time.time()

t = 0

==================================

coroutines

==================================

Function to get the current time and write it to a file

async def get_time(initial_time , directory , file_name):

global t

t = time.time() - initial_time

await write_value(

directory ,

file_name ,

t

)

Function to get sensor values and write them to a file

async def get_value(sensor_name , directory , file_name):

value = cafe.get(sensor_name)

await write_value(

directory ,

file_name ,

value

)

Function to write a value to a file

async def write_value(directory , file_name , value):

if not os.path.exists(directory) :

os.mkdir(directory)

print("The following directory was successly created

: ",

directory ,

"\n"

)

file_path = directory + "/" + file_name

if os.path.exists(file_path):

with open(file_path , "a") as file:

file.write(str(value) + "\n")

else:

52

with open(file_path , "w") as file:

file.write(str(value) + "\n")

file_path = os.path.join(directory , file_name)

Function to set the gain for the sensors

async def set_gain(i, T):

cafe.set(’ARIDI -TU2:RFGAIN -SET’,i)

await asyncio.sleep(T)

Function to perform measurements using coroutines

async def do_measurements ():

tasks = []

for n in range(len(sensors_names)):

task = get_value(sensors_names[n], directory ,

files_names[n])

tasks.append(task)

await asyncio.gather(get_time(initial_time ,

directory ,

files_names[len(

sensors_names)]),

*tasks)

Coroutines to handle sensor measurements and gain setting

async def sensors_task ():

global t

while t < total_time:

await asyncio.gather(do_measurements (), asyncio.

sleep(sample_period))

async def gain_task ():

await asyncio.sleep(init_time)

for i in gain:

await set_gain(i,T)

==================================

main()

==================================

async def main():

await asyncio.gather(sensors_task (),

gain_task ())

53

if __name__ == "__main__":

loop = asyncio.get_event_loop ()

try:

loop.run_until_complete(main())

finally:

loop.close ()

==================================

Analysis for the touschek lifetime Load data from files

into lists

==================================

==================================

parameters

==================================

tau = []

dPCT = []

PCT = []

t = []

y=[]

fwd_pow =[]

==================================

Slow BLM

==================================

CMOS1L1 = []

CMOS1L2 = []

CMOS1L3 = []

CMOS1L4 = []

CMOS1L5 = []

CMOS1L6 = []

CMOS1L7 = []

CMOS1L8 = []

CMOS1L9 = []

CMOS1L10 = []

CMOS1L11 = []

CMOS2L1 = []

CMOS2L2 = []

CMOS2L3 = []

CMOS2L4 = []

CMOS2L5 = []

CMOS2L6 = []

CMOS2L7 = []

CMOS2L8 = []

CMOS3L1 = []

54

CMOS3L2 = []

CMOS3L3 = []

CMOS3L4 = []

CMOS3L5 = []

CMOS3L6 = []

CMOS3L7 = []

CMOS4L1 = []

CMOS4L2 = []

CMOS4L3 = []

CMOS4L4 = []

CMOS4L5 = []

CMOS4L6 = []

CMOS4L7 = []

CMOS4L8 = []

CMOS4L9 = []

CMOS4L10 = []

CMOS4L11 = []

CMOSsum =[]

==================================

fast BLM

==================================

LA=[]

LB=[]

LC=[]

LD=[]

Lsum =[]

files_names = ["Fwd_power.txt", "Y_beamsize.txt","lifetime.

txt","dPCT.txt" ,"current.txt","LA.txt", "LB.txt", "LC.

txt", "LD.txt","CMOS1L1.txt", "CMOS1L2.txt", "CMOS1L3.txt

", "CMOS1L4.txt","CMOS1L5.txt","CMOS1L6.txt","CMOS1L7.txt

","CMOS1L8.txt","CMOS1L9.txt","CMOS1L10.txt","CMOS1L11.

txt","CMOS2L1.txt", "CMOS2L2.txt", "CMOS2L3.txt", "

CMOS2L4.txt", "CMOS2L5.txt", "CMOS2L6.txt", "CMOS2L7.txt"

, "CMOS2L8.txt","CMOS3L1.txt", "CMOS3L2.txt", "CMOS3L3.

txt", "CMOS3L4.txt", "CMOS3L5.txt", "CMOS3L6.txt", "

CMOS3L7.txt","CMOS4L1.txt", "CMOS4L2.txt", "CMOS4L3.txt",

"CMOS4L4.txt","CMOS4L5.txt","CMOS4L6.txt","CMOS4L7.txt",

"CMOS4L8.txt","CMOS4L9.txt","CMOS4L10.txt","CMOS4L11.txt"

,"tchroma_vs_lifetime.txt"]

data_liste = [fwd_pow ,y, tau , dPCT ,PCT ,LA ,LB ,LC ,LD ,CMOS1L1 ,

CMOS1L2 ,CMOS1L3 ,CMOS1L4 ,CMOS1L5 ,CMOS1L6 ,CMOS1L7 ,CMOS1L8 ,

CMOS1L9 ,CMOS1L10 ,CMOS1L11 ,CMOS2L1 ,CMOS2L2 ,CMOS2L3 ,CMOS2L4

,CMOS2L5 ,CMOS2L6 ,CMOS2L7 ,CMOS2L8 ,CMOS3L1 ,CMOS3L2 ,CMOS3L3 ,

CMOS3L4 ,CMOS3L5 ,CMOS3L6 ,CMOS3L7 ,CMOS4L1 ,CMOS4L2 ,CMOS4L3 ,

CMOS4L4 ,CMOS4L5 ,CMOS4L6 ,CMOS4L7 ,CMOS4L8 ,CMOS4L9 ,CMOS4L10 ,

CMOS4L11 ,t]

Loop through the files and extract data

55

for i in range(len(files_names)):

chemin_fichier = os.path.join(directory , files_names[i])

fichier = open(chemin_fichier , "r")

contenu = fichier.readlines ()

fichier.close()

data_liste[i]. extend ([float(ligne.strip()) for ligne in

contenu])

class Bunch(dict):

def __init__(self , ** kwargs):

super ().__init__(kwargs)

self.__dict__ = self

tauinv =[]

taupctinv =[]

yinv =[]

Get the length of the LA list

n = len(LA)

Generate a list of indices in reverse order

indices = list(range(n-1, 0, -1))

Filter indices to remove based on a condition

indices_to_remove = [i for i in indices if dPCT[i] >= 0]

Remove corresponding elements from all lists during

injection

for i in indices_to_remove:

LA.pop(i)

LB.pop(i)

LC.pop(i)

LD.pop(i)

tau.pop(i)

t.pop(i)

dPCT.pop(i)

PCT.pop(i)

CMOS1L1.pop(i)

CMOS1L2.pop(i)

CMOS1L3.pop(i)

CMOS1L4.pop(i)

CMOS1L5.pop(i)

CMOS1L6.pop(i)

CMOS1L7.pop(i)

CMOS1L8.pop(i)

CMOS1L9.pop(i)

CMOS1L10.pop(i)

CMOS1L11.pop(i)

56

CMOS2L1.pop(i)

CMOS2L2.pop(i)

CMOS2L3.pop(i)

CMOS2L4.pop(i)

CMOS2L5.pop(i)

CMOS2L6.pop(i)

CMOS2L7.pop(i)

CMOS2L8.pop(i)

CMOS3L1.pop(i)

CMOS3L2.pop(i)

CMOS3L3.pop(i)

CMOS3L4.pop(i)

CMOS3L5.pop(i)

CMOS3L6.pop(i)

CMOS3L7.pop(i)

CMOS4L1.pop(i)

CMOS4L2.pop(i)

CMOS4L3.pop(i)

CMOS4L4.pop(i)

CMOS4L5.pop(i)

CMOS4L6.pop(i)

CMOS4L7.pop(i)

CMOS4L8.pop(i)

CMOS4L9.pop(i)

CMOS4L10.pop(i)

CMOS4L11.pop(i)

y.pop(i)

fwd_pow.pop(i)

taupct =[]

for i in range(len(t)):

tauinv.append (1/ tau[i])

k=(-PCT[i]/dPCT[i])/60

taupct.append (1/k)

yinv.append (1/y[i])

tauinv_copy = tauinv.copy()

taupct_copy = taupct.copy()

y_copy = y.copy()

yinv_copy = yinv.copy()

for i in range(len(y) -1,-1,-1):

if y[i] <=80:

yinv_copy.pop(i)

y_copy.pop(i)

taupct_copy.pop(i)

tauinv_copy.pop(i)

features = yinv_copy

57

dataset = Bunch(data=features)

feature_names = [’y’]

df = pd.DataFrame(dataset.data , columns=feature_names)

dataset.target=tauinv_copy

df[’tau’] = dataset.target

df.head()

corr=df.corr()

print(corr)

print(df.corr().abs().nlargest(6,’tau’).index)

columns = [’y’]

data = {’y’:df[’y’]}

x = pd.DataFrame(data , columns=columns)

Y=df[’tau’]

from sklearn.model_selection import train_test_split

x_train ,x_test ,y_train ,y_test=train_test_split(x,Y,test_size

=0.3, random_state =5)

n_iterations = 10000 # Number of bootstrap iterations

x[’intercept ’] = 1

coef_samples = np.zeros((n_iterations , x.shape [1])) # x

represents your independent variables

y_pred_samples = np.zeros ((n_iterations , len(y_test)))

intercept_samples = np.zeros(n_iterations) # y_test

represents your dependent test values

p = 1000

gas = []

touschek = []

for i in range(n_iterations):

tauousch = []

Bootstrap sampling of the data

x_boot , y_boot = resample(x_train , y_train)

Create a linear regression model and train it on the

bootstrapped data

model = LinearRegression ()

model.fit(x_boot , y_boot)

Save the sampled regression coefficients

coef_samples[i] = model.coef_

gas.append (1/ model.intercept_)

for j in range(len(tau)):

k = tauinv[j] - 1/gas[i]

tauousch.append (1/k)

58

touschek.append(tauousch[len(tauousch) - 1])

Make predictions on the bootstrapped test data

y_pred_samples[i] = model.predict(x_test)

intercept_samples[i] = model.intercept_

tau_pred = model.predict(x_test)

g = np.mean(gas)

gstd = np.std(gas)

tou = np.mean(touschek)

toustd = np.std(touschek)

print("gas lifetime:", g, " ", 2*gstd)

print("touschek lifetime:", tou , " ", 2* toustd)

Calculating uncertainty on regression coefficients

coef_std = np.std(coef_samples , axis =0)

intercept_std = np.std(intercept_samples)

Calculating error bars on predicted values

y_pred_mean = np.mean(y_pred_samples , axis =0) # Mean of

sampled predictions

y_pred_std = np.std(y_pred_samples , axis =0) # Standard

deviation of sampled predictions

Calculating Mean Squared Error (MSE)

mse = mean_squared_error(y_test , y_pred_mean)

print("MSE:", mse)

Calculating Mean Absolute Error (MAE)

mae = mean_absolute_error(y_test , y_pred_mean)

print("MAE:", mae)

Displaying regression coefficients with their uncertainty

for i, coef in enumerate(model.coef_):

print("Coeff", i, ": ", coef , " ", coef_std[i])

print("intercept :", model.intercept_ , " ", intercept_std)

print(’R-squared:’, model.score(x_test , y_test))

a = model.intercept_

b = model.coef_

Z = []

Delta = []

for i in range(len(tauinv)):

k = a + b * yinv[i]

Delta.append(taupct[i] - k)

Z.append(k)

tautousch = []

59

for i in range(len(tauinv)):

k = tauinv[i] - a

tautousch.append (1 / k)

Removing data points with tautousch > 700

for i in range(len(tautousch) -1,-1,-1):

if tautousch[i] >= 700:

LA.pop(i)

LB.pop(i)

LC.pop(i)

LD.pop(i)

tautousch.pop(i)

CMOS1L1.pop(i)

CMOS1L2.pop(i)

CMOS1L3.pop(i)

CMOS1L4.pop(i)

CMOS1L5.pop(i)

CMOS1L6.pop(i)

CMOS1L7.pop(i)

CMOS1L8.pop(i)

CMOS1L9.pop(i)

CMOS1L10.pop(i)

CMOS1L11.pop(i)

CMOS2L1.pop(i)

CMOS2L2.pop(i)

CMOS2L3.pop(i)

CMOS2L4.pop(i)

CMOS2L5.pop(i)

CMOS2L6.pop(i)

CMOS2L7.pop(i)

CMOS2L8.pop(i)

CMOS3L1.pop(i)

CMOS3L2.pop(i)

CMOS3L3.pop(i)

CMOS3L4.pop(i)

CMOS3L5.pop(i)

CMOS3L6.pop(i)

CMOS3L7.pop(i)

CMOS4L1.pop(i)

CMOS4L2.pop(i)

CMOS4L3.pop(i)

CMOS4L4.pop(i)

CMOS4L5.pop(i)

CMOS4L6.pop(i)

CMOS4L7.pop(i)

CMOS4L8.pop(i)

CMOS4L9.pop(i)

CMOS4L10.pop(i)

CMOS4L11.pop(i)

Delta.pop(i)

60

y.pop(i)

tauinv.pop(i)

Z.pop(i)

yinv.pop(i)

fwd_pow.pop(i)

Create lists for values where y > 100 and y < 100

y_sup_60 = [y_val for y_val in y if y_val > 100]

tauinv_sup_60 = [tauinv[i] for i, y_val in enumerate(y) if

y_val > 100]

y_inf_40 = [y_val for y_val in y if y_val < 100]

tauinv_inf_40 = [tauinv[i] for i, y_val in enumerate(y) if

y_val < 100]

Generate the equation and coefficient of determination

label

equation = f’1/tau = ({b.item():.2e} {coef_std [0]. item():.2

e})/Y + {a.item():.2e} {intercept_std.item():.2e}’

m = model.score(x_test , y_test)

label = f’{equation }\ n R = {m:.3f}’

Plot the graph using different colors for values where y >

60 and y < 40

fig , ax = plt.subplots ()

plt.scatter(y_sup_60 , tauinv_sup_60 , color=’blue’, label=’y

> 100’)

plt.scatter(y_inf_40 , tauinv_inf_40 , color=’green’, label=’y

< 100’)

plt.plot(y, Z, ’r-’, label=’invert of tau predicted versus

beamsize ’)

plt.text (0.99 , 0.7, label , ha=’right’, va=’top’, fontsize=8,

transform=ax.transAxes , bbox=dict(facecolor=’white’,

edgecolor=’black’, boxstyle=’round’))

plt.xlabel("Beamsize in m ")

plt.ylabel("Inverse lifetime in h ")

plt.legend ()

plt.title(’Inverse of lifetime vs beamsize ’)

Generate the equation using the variables

plt.figure (20)

plt.scatter(y, Delta , label=’residuals ’)

plt.xlabel("Beamsize in m ")

plt.ylabel(’residuals for Inverse lifetime in hour’)

plt.legend ()

plt.title(’residuals vs beamsize ’)

61

Extract ’y’ values as features and ’tautousch ’ as the

target

features = y

dataset = Bunch(data=features)

feature_names = [’y’]

df = pd.DataFrame(dataset.data , columns=feature_names)

dataset.target = tautousch

df[’tau’] = dataset.target

df.head()

Calculate the correlation matrix

corr = df.corr()

print(corr)

print(df.corr().abs().nlargest(6, ’tau’).index)

Define columns and create dataframes ’x’ and ’Y’ for train

-test split

columns = [’y’]

data = {’y’: df[’y’]}

x = pd.DataFrame(data , columns=columns)

Y = df[’tau’]

Perform train -test split

from sklearn.model_selection import train_test_split

x_train , x_test , y_train , y_test = train_test_split(x, Y,

test_size =0.3, random_state =5)

n_iterations = 10000 # Number of bootstrap iterations

x[’intercept ’] = 1

coef_samples = np.zeros((n_iterations , x.shape [1])) # x

represents your independent variables

y_pred_samples = np.zeros ((n_iterations , len(y_test)))

intercept_samples = np.zeros(n_iterations) # y_test

represents your test dependent values

touschek = []

for i in range(n_iterations):

Bootstrap sampling of the data

x_boot , y_boot = resample(x_train , y_train)

Create a linear regression model and train it on the

bootstrapped data

model = LinearRegression ()

model.fit(x_boot , y_boot)

Save the sampled regression coefficients

coef_samples[i] = model.coef_

Make predictions on the bootstrapped test data

y_pred_samples[i] = model.predict(x_test)

intercept_samples[i] = model.intercept_

62

Calculate uncertainty on regression coefficients

coef_std = 2 * np.std(coef_samples , axis =0)

intercept_std = 2 * np.std(intercept_samples)

Calculate error bars on predicted values

y_pred_mean = np.mean(y_pred_samples , axis =0) # Mean of

bootstrapped predictions

y_pred_std = np.std(y_pred_samples , axis =0) # Standard

deviation of bootstrapped predictions

Calculate Mean Squared Error (MSE) and Mean Absolute Error

(MAE)

mse = mean_squared_error(y_test , y_pred_mean)

print("MSE:", mse)

mae = mean_absolute_error(y_test , y_pred_mean)

print("MAE:", mae)

Display regression coefficients with their uncertainty

for i, coef in enumerate(model.coef_):

print("Coeff", i, ":", coef , " ", coef_std[i])

print("intercept:", model.intercept_ , " ", intercept_std)

print("R-squared:", model.score(x_test , y_test))

a = model.intercept_

b = model.coef_

Z2 = []

Delta2 = []

for i in range(len(tautousch)):

k = a + b * y[i]

Delta2.append(tautousch[i] - k)

Z2.append(k)

Generate the equation and coefficient of determination

label for touschek lifetime

equation = f’tousch = ({model.coef_.item():.2e} {coef_std

[0]. item():.2e})*Y {model.intercept_.item():.2e} {

intercept_std.item():.2e}’

m = model.score(x_test , y_test)

label2 = f’{equation }\ n R = {m:.3f}’

Plot touschek lifetime versus beamsize

fig , ax1 = plt.subplots ()

plt.figure (8)

plt.scatter(y, tautousch , label=’touschek lifetime versus

beamsize ’)

plt.plot(y, Z2 , color="red", label=’touschek lifetime fitted

’)

plt.text (0.65 , 0.8, label2 , ha=’right’, va=’top’, fontsize

63

=8, transform=ax1.transAxes , bbox=dict(facecolor=’white ’,

edgecolor=’black’, boxstyle=’round’))

plt.xlabel("Beamsize in m ")

plt.ylabel(’tau in hour’)

plt.legend ()

plt.title(’touschek lifetime versus beamsize ’)

plt.show()

Plot residuals for touschek lifetime versus beamsize

plt.figure (21)

plt.scatter(y, Delta2 , label=’residuals ’)

plt.xlabel("Beamsize in m ")

plt.ylabel(’residuals in hour’)

plt.legend ()

plt.title(’residuals for touschek lifetime vs beamsize ’)

plt.show()

Listing 4: Touschek lifetime measurement script

64

