



Universität Zürich<sup>∪z∺</sup>



# Higgs triplets at the LHC

*Guglielmo Coloretti University of Zurich and Paul Scherrer Institut 31.10.2023* 

## Is there NP at the EW scale?

SM scalar sector is minimal and leaves room for NP

- W mass (2.2 $\sigma$ /3.7 $\sigma$  tension exl/in-cluding CDF II)
- Narrow resonances  $(\gamma\gamma, WW, \tau\overline{\tau}, Z + b\overline{b})$ at 95 (3.8 $\sigma$ )
- Multi-lepton anomalies:
  - **1.**  $t\bar{t}, t\bar{t}W, 4t, Wh, WWW$
  - 2. Hints for low mass *WW* resonances ( $\geq 2\sigma$ )



2306.17209

## Multi-lepton anomalies (MLA)

• Multi-lepton anomalies (MLA): deviations from SM in processes with W- like signature ( $e/\mu$  + MET)

| Final state                                                           | Characteristics                            | SM backgrounds                     | Significance      |
|-----------------------------------------------------------------------|--------------------------------------------|------------------------------------|-------------------|
| $\ell^+\ell^-$ +( <i>b</i> -jets) <sup>51,54,55</sup>                 | $m_{\ell\ell} < 100 \text{GeV},  (1b, 2b)$ | $t\overline{t},Wt$                 | $> 5\sigma$       |
| $\rightarrow \ell^+ \ell^- + (\text{no jet})^{50, 56}$                | $m_{\ell\ell} < 100{ m GeV}$               | $W^+W^-$                           | $\approx 3\sigma$ |
| $\ell^{\pm}\ell^{\pm}, 3\ell + b$ -jets <sup>53, 57, 58</sup>         | Moderate $H_T$                             | $t\bar{t}W^{\pm},t\bar{t}t\bar{t}$ | $> 3\sigma$       |
| $\ell^{\pm}\ell^{\pm}, 3\ell, (\text{no } b\text{-jet})^{52, 59, 60}$ | In association with h                      | $W^{\pm}h(125), WWW$               | $\gtrsim 4\sigma$ |
| $Z(\rightarrow \ell \ell)\ell$ , (no <i>b</i> -jet) <sup>51,61</sup>  | $p_{\mathrm{T}}^{Z} < 100 \mathrm{GeV}$    | $ZW^{\pm}$                         | $> 3\sigma$       |
|                                                                       | _                                          | •                                  | (2109 06065)      |

- The EW scale NP is not yet fully explored at the LHC (associated production)
- LHC Run3 data, FCC and CEPC will be able to scrutinize BSM scenarios at this scale

## WW analysis

- No dedicated BSM search for  $gg \rightarrow H \rightarrow WW$  with full luminosity and including 90 GeV for the range of  $m_H$
- CMS (<u>2206.09466</u>) and ATLAS (<u>2207.00338</u>) analyses available for SM Higgs (135 fb<sup>-1</sup>)



 Simulation with MadGraph5\_aMC@NLO (Pythia8, Delphes)



2302.07276

- O-jet
- Different flavour opposite sign lepton pair

## SM WW searches: ATLAS 2207.00338



- ATLAS reports the postfit data
- Only SM contribution is rescaled by a factor of 1.21

## SM WW searches: CMS 2206.09466



CMS performs a simultaneous fit of SM+background

## WW simulation

#### Limitations of fast simulation

- Smearing and shifts
- Corrected for efficiency (energy dependence)
- Corrected for QCD NNLO effects in production cross section

Checks over SM-samples: ATLAS full-simulation VS MG5 fast-simulation



## WW results

• Observed limit is weaker than expected over the whole mass range (preference for BSM  $\geq 2\sigma$ )



## $\gamma\gamma$ excess at 95 GeV



## Triplets at the LHC

Could the 95 GeV hints be explained by a real  $SU(2)_L$  scalar triplet?

$$\Delta = \frac{1}{2} \begin{pmatrix} \delta^0 & \sqrt{2}\delta^+ \\ \sqrt{2}\delta^- & -\delta^0 \end{pmatrix}$$

• Natural explanation of W mass anomaly if the neutral component  $\delta^0$  acquires a small vacuum expectation value  $v_{\Delta} \approx O(1 \text{ GeV})$ 

| Physical fields          | Parameters                            |
|--------------------------|---------------------------------------|
| CP-even scalar H         | $\alpha$ : mixing angle with SM-Higgs |
| Charged scalar $H^{\pm}$ | $v_\Delta$ : vev of $\delta^0$        |

## $H(95) \rightarrow \gamma\gamma$ : results

#### 2306.15722

#### **Constraints:**

- Br[ $h \to \gamma \gamma / ZZ$ ]
- Perturbative unitarity
- Vacuum stability

#### Hints for 95 GeV scalar:

- $H \rightarrow \gamma \gamma$  (CMS and ATLAS)
- $Z + (H \rightarrow b\overline{b})$  (LEP)
- Wmass



Since effects in W mass are small,  $v_{\Delta} \approx O(1 \text{GeV})$ , thus a small mass splitting  $m_{H^{\pm}} \approx m_{H} \approx 95 \text{ GeV}$ 

## $H^{\pm}(95) \rightarrow \tau \nu$ : stau searches

• Drell-Yan production  $pp \rightarrow H^{\pm} \rightarrow \tau \nu$  has same signature as stau decays  $\sigma(pp \rightarrow H^{\pm} \rightarrow \tau \nu)$  borderline with existent CMS and ATLAS stau searches limits



- Although  $m_{H^{\pm}} \approx m_{H}$ , the maximum mass splitting is  $\approx 4(v_{\Delta}/v_{SM})^{2}$
- This opens the channel  $H^{\pm} \rightarrow HW^*$  and reduces the branching ratios of  $H^{\pm} \rightarrow \tau \nu$
- Alternative solution: Vector Like Quarks to enhance  $H^{\pm} \rightarrow cs$

## Predictions for $p_T$ of $H \rightarrow \gamma \gamma$

- *H* produced in DY with  $H^{\pm}$ :  $pp \rightarrow H^{\pm} (H \rightarrow \gamma \gamma)$
- $p_T$  not GF like:  $pp \rightarrow H \rightarrow \gamma \gamma$
- $p_T$  not VH like:  $pp \rightarrow V(H \rightarrow \gamma \gamma)$











# Thanks for your attention!

## **Back-up slides**

## 95 and 152 excesses: summary



 The p-values of the individual high mass channels as well as their combination, both including and excluding the μe signal

## **Triplet Drell-Yan production**

- γγ production:
  1. Drell-Yan
  2. GF (SM mixing)
- Br[ $H 
  ightarrow \gamma \gamma$ ] sizable as a function of mixing CP-even angle lpha and mass splitting  $m_{H^\pm} - m_H$
- Although  $H^{\pm} \rightarrow \text{jets}$ , **no VBF signal** (jets angular distribution)



## FCCC mediated by H<sup>±</sup>

- Coupling of Δ to fermions happens only via mixing with the SM Higgs doublet
- Couplings of  $H^{\pm}$  to fermions are fixed by gauge invariance and proportional to  $Sin(\epsilon) \approx v_{\Delta}/\sqrt{v_{\Delta}^2 + v_{SM}^2}$ , with  $\epsilon$  being the mixing angle among the charged component of the triplet and the SM charged Goldstone boson
- Since  $v_{\Delta}$  is small ( $m_W$  only slightly enhanced), effects related to FCCC mediated by  $H^{\pm}$  are negligible

## Reduction of $Br[H^{\pm} \rightarrow \tau \nu]$

- Although  $m_{H^{\pm}} pprox m_{H}$ , opening of the channel  $H^{\pm} 
  ightarrow HW^{*}$
- Reducing the decay rate  $H^{\pm} \rightarrow \tau \nu$
- Alternative solution: Vector Like Quarks to enhance  $H^{\pm} \rightarrow cs$

