# Present status of e-driven positron source for ILC

Yoshinori Enomoto (KEK) On behalf of iCASA positron group 2023/8/23

### **KEK** and positron

#### From TRISTAN to ILC

- KEK LINAC has keep providing positron beam to e<sup>+</sup>e<sup>-</sup> collider experiment since 1980s.
- Positron source for SuperKEKB is world's most intense positron source in operation.
- We play an important role to develop future positron source for ILC.







### **KEK** and positron

#### Slow positron facility

- Slow positron is one of four probes, which KEK provides for material scientists, photon (PF), neutron, (J-PARC), Muon (J-PARC)
- The SPF exists between two lines of LINAC
- Upgrade plan to 50 kW (from 0.5 kW) proposed
- It's possible to be a good test bench for future high power positron source
- High gradient acc. Structure is another important component





#### **Recent situation**

- 2022/9 New group to develop positron source for ILC launched in KEK iCASA (Innovation Center for Applied Superconducting Accelerators)
- 2023/4 5 years grant for selected time-critical work packages\* was approved

\*Source, SRF, nano-beam

- I (YE) was working on SuperKEKB positron source since 2015
- In 2022, performance of the positron source almost reached its design value
- I moved from injector group to iCASA to launch a group for positron source for ILC.

#### Main mission of positron source group

- Goals of ILC positron group in KEK is demonstrate our design
  - Prepare
    - engineering design report (EDR)
    - 3D CAD model
    - Drawings for manufacturing
  - Arrange test environment
  - Construct prototype and test it



Real positron source, its 3D model and test bench for SuperKEKB We are going to prepare the similar ones for ILC

#### Latest 3D model for ILC positron source



### Test bench for ILC positron source



#### **Comparison of positron sources**

- Based on SuperKEKB
- Big jump from SuperKEKB
- 3 x SLC in beam power (74 kW)
- 4 x SuperKEKB in capture efficiency



#### ILC Technology Network



### WP-prime 8 Rotating Target for e-Driven Scheme

- 74 kW (3 x SLC) beam power
- Rotating mechanism
  - Water-cooled
  - UHV compatible
  - o **225 rpm**
- Target disk
  - W-Cu connection
    - Mechanical and thermal evaluation
    - CFD simulation using experimental data
    - HIP, SPS, Brazing
  - Target material selection and evaluation
    - Mechanical property at operating temperature
    - Cost, lead time, available size, uniformity



### WP-prime 8 Rotating Target for e-Driven Scheme

- 74 kW (3 x SLC) beam power
- Rotating mechanism
  - Water-cooled
  - UHV compatible
  - o 225 rpm
- Target disk
  - W-Cu connection
    - Mechanical and thermal evaluation
    - CFD simulation using experimental data
    - HIP, SPS, Brazing
  - Target material selection and evaluation
    - Mechanical property at operating temperature
    - Cost, lead time, available size, uniformity







Electron gun: JEBG-3000UB manufactured by JEOL Ltd.



### WP-prime 8 Rotating Target for e-Driven Scheme

- 74 kW (3 x SLC) beam power
- Rotating mechanism
  - Water-cooled
  - UHV compatible
  - o 225 rpm
- Target disk
  - W-Cu connection
    - Mechanical and thermal evaluation
    - CFD simulation using experimental data
    - HIP, SPS, Brazing
  - Target material selection and evaluation
    - Mechanical property at operating temperature
    - Cost, lead time, available size, uniformity



- To improve strength, ductility, recrystallization resistance, radiation tolerance, many alloying and composite technologies have been developed.
- We should keep in mind their availability, cost, lead time and availability.
- Especially, W is made by sintering, making large plate keeping uniformity is difficult.
- In the case of alloy, uniformity is much more important than that for pure W.
- There are no high-power positron target which use large size (50 cm diamater) W-alloy as far as I know.

### **WP-prime 9 Magnetic focusing**

- Flux concentrator
  - 20 times higher ohmic loss compared with that of SKEKB
  - Additional beam loss from target
  - Fully 3D simulation established in the SKEKB project.
  - Two prototype and high-power test
- Pulsed power supply
  - o 300 Hz compatible
  - o 50 times higher power compared with that of SKEKB
  - Energy recovery mechanism is necessary
- Need parameter optimization
  - Present parameters are not realistic especially power supply
  - Shorter pulse length
    - Need higher voltage
    - Counter measure to discharge
    - Flat top control

|                     | ILC                | SKEKB                    |
|---------------------|--------------------|--------------------------|
| Primary<br>current  | 33 kA              | 12 kA                    |
| Secondary current   | 25 kA              | 12 kA                    |
| Pulse width         | 25 us              | 5 us                     |
| Repetition          | 100 Hz             | 50 Hz                    |
| Ohmic loss          | 14 kW              | 0.7~0.8 kW<br>(measured) |
| Beam loss           | 4 kW               | Small                    |
| Total loss@<br>Load | 18 kW              | 0.7~0.8 kW<br>(measured) |
| P.S. power          | (630 kW)<br>210 kW | 12 kW                    |



#### **Bunch structure**

M. Kuriki, OHO seminar 2021



- Create positron for 66 ms
- Store them in the DR for 199.3 ms
- Extract them to main linac for 0.7 ms
- 20 pulse / train
- 66 bunch / pulse
- 1320 bunch / train
- Repetition 5 Hz
- FC must keep field variation below the requirement to keep bunch-by-bunch charge variation
- Minimum current pulse width is about 500 ns

### WP-prime 10 Capture cavity

- Design challenges of Large aperture L-band cavity
  - Beam loading compensation for multi bunch operation
    - Full model RF and beam simulation
    - Simulation method using CST is almost established
  - Very high heat load of shower from the target
    - novel cooling design
  - Remote beam flange connection
    - Connection point is surrounded by solenoid
- Two prototype and high-power test



Previous design and prototype at SLAC Phys. Rev. AB 12, 042001 (2009)



#### **WP-prime 11 Target replacement**

- Total model preparation
  - Construct as early as possible
    - Use dummy for FC, Acc.
      Structure at first
  - Prepare and manage full 3D CAD model
  - Improve continuously
- 3 times exchange experiences through SKEKB operation
- Collaboration with other high power target facilities, J-PARC, RIKEN, FRIB...
- Automatic connection disconnection mechanism
  - Flange connection
  - Movable base connection



Girder structure on rail



Automatic connection coupler



Pillow seal 16

# Summary of WPs

- Each development topic is challenging
- Development based on experiences through SuperKEKB
- Integration into one package is more important and difficult task
- Prototyping and continuous improvement are necessary

### **Present status**

- Target rotation mechanism
- Target heatsink connection
- FC design
- Acc. Structure design
- Collimator and pillow seal
- Tracking simulation

### **Target rotation mechanism**



# **Differential pumping**







- Analytical formula and simulation
- Assume 100 L/sec effective pumping speed, 10<sup>-5</sup> pressure difference will be achieved 30 um gap
- Filling gap by radiation resistant vacuum grease is possible option for further reducing conductance



### **Target - heatsink connection**

- HIP (Hot isotropic pressing)
  - Prepare sample
  - Strain-stress test
- SPS (spark plasma sintering)
  - Prepare sample
  - □Strain-stress test
  - □Thermal resistance measurment

### **Thermo-mechanical simulation**



~420

~200 ~250

Max temperature of W [°C]

Max equivalent stress at W/Cu junction [MPa]

Max equivalent stress at W junction [MPa]

\*expected value, simulation is ongoing

## HIP



#### Sample( $\Phi$ 5-40L) for strain-stress test

Separated at contact surface ( $\sim$ 150 MPa) Strength of the connection is less than Cu yield strength (~200 MPa) HIP is used for SuperKEKB target

# SPS(Sparc plasma sintering)

- Collaboration with NIFS (National Institute for Fusion Science)
- Fill Cu and W powder between W ring and Cu disk
  - Press, heat up, current flow
- Searching condition for sample production
  - ο First step Φ40
  - Second step Φ100 with water cooling port
- Strain-stress test
  - o done for 1<sup>st</sup> sample
- Thermal resistance measurement
  - At NIFS high power electron beam facility (300 kW) in this winter





## FC

- EM-thermal simulation using CST with engineering model
  - Evaluation method was established in SuperKEKB design
  - Transient magnetic solver
  - Steady state thermal solver
  - Transient thermal solver
- Large Ohmic loss is expected
  - Optimize parameters
    - Aperture
    - Current waveform (pulse width)
    - Material
    - Slit width
    - Inlet radius
    - Cooling water path



|             | SuperKEKB                  | ILC                                                     |
|-------------|----------------------------|---------------------------------------------------------|
| Peak Bz     | 3.5 T                      | 5 T                                                     |
| Aperture    | 7 mm                       | 16, 12 mm                                               |
| repetition  | 50 Hz                      | 100 Hz                                                  |
| Pulse width | 5 us                       | 10 ~ 25 us                                              |
| Ohmic loss  | 0.5 ~ 0.8 kW<br>(measured) | Around 10 kW<br>(depend on aperture<br>and pulse width) |

### **Magnetic field**



### **Transient temperature rise**

1D Results¥ThermalTD¥Temperature0D



### **Transient temperature rise**



### Acc. structure

Reference design by SLAC (15 years ago)
 500L/min. cooling water for 1.4 m L-band structure to reduce temperature rise by shower

#### SLAC model



#### SLAC model



#### SLAC model



### Stored prototype in SLAC



# **Design** goal

- Large aperture
  - o Increase positron yield
  - Standing wave cavity was selected
  - **70 mm**
- High Vg ang coupling
  - Overcome heavy beam loading due to multi bunch operation
  - APS was selected
- High cooling capacity
  - Suppress temperature rise of cavity less than 1°C (~10<sup>-5</sup> thermal expansion) under a few kW heat load for each cell from beam shower
  - o 500 L/min. is expected
  - o place cooling Water path near the iris as much as possible
- Round and small outer shape
  - No bump is acceptable for installation

### Latest 3D model



### Latest 3D model (coupler)



### **Energy deposition simulation by Fluka**



#### Integrated deposition along beam axis



#### **Collimator diameter dependence of heat load**



Beam Axis(cm)

#### Steady state temperature simulation by ANSYS



- 1<sup>st</sup> version design
  - Max. temp 180°C
  - Assuming 5000 W/m<sup>2</sup>K for water cooling
- Further optimization is possible to reduce temperature



### **Pillow seal with collimator**







#### Particle tracking from targe to 1<sup>st</sup> acc structure

|                                                                                 |                                            |    |  |  |    | MeV<br>100<br>40.1<br>10.1<br>4.1<br>0.5<br>0.2<br>0.14<br>0.1 |
|---------------------------------------------------------------------------------|--------------------------------------------|----|--|--|----|----------------------------------------------------------------|
| position monitor 1<br>Output<br>Sample<br>Time<br>Particles<br>Maximum (Global) | Energy<br>1/100<br>0 s<br>0<br>2480.83 MeV | \$ |  |  | 2- | Y                                                              |

Minimum (Global) 0.00232887 MeV





# **KEK injector linac and SPF**



# SPF upgrade plan



- \$16M plan proposed for mid-term project in KEK in 2021
- Strong support from user and community
- Many synergy with ILC and HE accelerator
- One of best test
  bench for high gradient
  accelerator
- Not approved

Courtesy of K. Wada

#### Application of the SuperKEKB positron source technology



## **SPF** in AIST

- AIST (National Institute of Advanced Industrial Science and Technology), 10 km from KEK, has another slow positron facility.
- Collaborating and proposing development of small positron source to replace isotope



### From SuperKEKB to ILC, FCC, CLIC, C3, CEPC...

- There are many common and similar tasks.
  - Experience in SuperKEKB will be useful for designing positron source for ILC.
  - Since the number of people in this field is not large even all over the world, collaboration with other projects like, FCC, CLIC, CEPC etc. is important.
  - Collaboration with non-accelerating institute is also important.
- A new group launched in KEK in Sept. 2022
  - Positron source and beam dump for ILC
- 5 year grant for ILC time-critical component will be start from FY2023
  - So-called pre-pre-lab
  - SRF, nano-beam, particle source
- Partners
  - JPARC (muon, hadron target), RIKEN (heavy ion target)
  - NIFS (SPS)
  - US-Japan program with SLAC and JLab
  - FJPPL
  - ITN (international technology network)
  - Another framework?