

PAUL SCHERRER INSTITUT

Searching for Higgs+charm production in the $\gamma\gamma$ +c final state at CMS

Tiziano Bevilacqua

11-20-23

PSI LTP Seminar

Outline

Introduction:

- Motivation.
- State of the art.
- New approaches.

Ingredients:

- Monte Carlo simulation.
- $H \rightarrow \gamma \gamma$ method.
- Framework development.
- Charm tagging.

H+c analysis status:

- Analysis strategy.
- Preliminary results.

11-20-23

Motivation

The Higgs boson:

- Last addition to the Standard Model:
 - Theorised in '64, discovered in 2012 😓 at the LHC.
- It has a unique role in the SM:
 - Important benchmark of the theory.
 - Responsible for the mechanism that gives masses to elementary particles.
- Precise measurements of the Higgs couplings is of crucial importance:
 - The SM is amazing, but it's an incomplete theory.
 - The Higgs sector could be a bridge to understanding new physics.

Nature 607, 60-68 (2022)

Motivation

Higgs couplings:

Couplings to other particles are precisely predicted and proportional to the particle masses:

- BR $H \rightarrow b\bar{b} \sim 58 \%$
- BR $H \rightarrow c\bar{c} \sim 3\%$
- Solution of the second strength of the sec
- 2nd generation fermion couplings are one of the primary goals of CMS physics program:
 - $H \rightarrow \mu\mu$: 3σ evidence (JHEP 01 (2021) 148)
 - What about charm?

Nature 607, 60-68 (2022)

State of the art: Previous results

3/26

<u>H. Qu</u>

* Direct search for $VH(H \rightarrow c\bar{c})$ PRL 131 (2023) 061801: recent improvements, most stringent limit on $H \rightarrow c\bar{c}$.

New approaches

H+c associated production:

- Proposed by theorists (<u>Isidori et al.</u> 2015).
- Advantages of this channel:
 - Leading contribution requires only 1 charm to be tagged.
 - Coupling with charm in production \Rightarrow clean Higgs decays $(H \rightarrow \gamma \gamma)$.
 - Uncovered phase space, complementary to existing $H \rightarrow c\bar{c}$ searches.
- But also a few challenges:

11-20-23

- Small cross section (~ 0.2 fb for $cH(H \rightarrow \gamma\gamma)$ vs 6.6 fb for $VH(H \rightarrow c\bar{c})$).
- Non trivial signal MC simulation.
- Challenging soft c-tagging.

But it's a group effort!

No experimental results yet!

Outline

Introduction:

- Motivation.
- State of the art.
- New approaches.

Ingredients:

- Monte Carlo simulation.
- $H \rightarrow \gamma \gamma$ method.
- Framework development.
- Charm tagging.

H+c analysis status:

- Analysis strategy.
- Preliminary results.

11-20-23

Why we need them?

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-10 00:59:42.114688 GMT Run / Event / LS: 326482 / 15086603 / 58

What we actually see

Quantum Chromo Dynamics

Why we need them?

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-10 00:59:42.114688 GMT Run / Event / LS: 326482 / 15086603 / 58

What we actually see

Quantum Chromo Dynamics

How?

5/26

- Theoretical knowledge of fundamental interactions.
- Random number generators give us events, extracted from probability distributions.

11-20-23

~13 TeV

11-20-23

Energy

Tiziano Bevilacqua

~1 GeV

Event generation:

PDFs.

- For different energy scales of the process, a different number of flavours is relevant.
- Probability to find a
 Parton of type *i* inside the proton with a fraction of momentum *x_i*.

~13 TeV

Energy

8/26

~1 GeV

Tiziano Bevilacqua

_

× + +

.

11-20-23

ME calculation: Hadronic cross section

The hadronic cross section producing a final state X:

$$\sigma_{pp\to X} = \sum_{a,b} \int dx_a \cdot dx_b \cdot f_a(x_a, \mu_b)$$

- * Separation between short- and long-distance effect delimited by a factorization scale μ_F (Factorisation theorem).
- Parton density functions f_i for flavour type *i* with a momentum fraction x_i .
- * $\hat{\sigma}_{ab \to X}$ is the partonic cross section of the process $ab \to X$ and is computed at fixed order in perturbation theory, introducing a dependence on the renormalization scale μ_R .

 $(f_F^2) \cdot f_b(x_b, \mu_F^2) \cdot \hat{\sigma}_{ab \to X}(x_a p_a, x_b p_b, \mu_F^2, \mu_R^2)$

11-20-23

ME fixed order calculations:

Partonic cross section computed as series expansion in the strong coupling α_s :

$$\hat{\sigma}_{ab\to X} = \alpha_s^n (\sigma_0 + \alpha_0)$$

$$LO + 1$$

11/26

Parton Shower:

Partonic cross section computed at Fixed Order:

$$\hat{\sigma}_{ab \to X} = \alpha_s^n (\sigma_0 + \alpha_0) + \alpha_0$$

$$LO + \Lambda$$

The rest (additional radiation and showering) is taken care by the PS:

- Account for the rest of higher order contributions.
- It uses approximations to reach high multiplicities.
- Valid in the soft and collinear phase space.
- Always finite.

Why we need them?

11-20-23

Still challenging but possible!

H+c production:

• Includes several contributions that do not depend on y_c :

- H + g (fakes and $g \rightarrow c\bar{c}$)
- $H + b(b \rightarrow c)$
- H + c not induced by y_c .

\Rightarrow most of the H + c cross section is not sensitive to y_c .

- * Modelling uncertainties on reducible and irreducible 'Higgs backgrounds' can limit sensitivity to y_c in H + c channel.
- Open questions: How to simulate y_c induced H+c?
 - All these non- y_c contributions are already included in H + jets MCs used by experiments (except for H + b component that depends on y_b).
 - Many studies on H + b simulation but none on H + c.

.

H+c signal:

Focusing on the signal simulation for H + c MC (not available in CMS up to now). •

- * $\sigma(hc)$ does not scale trivially with y_c , some tests were run with effective ggH coupling at LO.
- Biggest contribution from the term that does not probe y_c , but small y_c proportional interference term (~10 times) • smaller than the y_c^2 dependent term), for sensitivity $O(10 \cdot SM)$ contribution of ~1%.
- * As first approximation one can generate signal probing y_c^2 and bgs/interference in separate MC, avoid overlap with H + jets MCs.

Focus on the y_c^2 term:

- Simulated with MadGraph_aMC@NLO ([QCD] NLO) + Pythia8 Parton Shower.
- * Simulated using loop_sm model to have y_c in the \overline{MS} renormalisation scheme and include running of $y_c \to \overline{y}_c(\mu_R)$ and $m_c \to \overline{m}_c(\mu_R)$.
- Simulated using 4 Flavour Scheme (4FS), to have charm quarks in the initial state.

11-20-23

Theoretical uncertainty studies:

11-20-23

- * H+c MC ME calculation can be done in either 3FS or 4FS, i.e. considering the c massive or massless.
- In principle equivalent → In practice to assess the additional theory uncertainty we compare samples produced using both methods:
 - \Rightarrow FS uncertainty O(30%) of the yields in analysis categories.
- Uncertainty due to Scales and PDFs are smaller than FS uncertainty.
- ★ We also studied the impact of the choice of simulation input parameters on the two FS: ⇒ decide the best choice of theory scales (μ_R , μ_F , and R_{sh}).

Theoretical uncertainty studies:

- * H+c MC ME calculation can be done in either 3FS or 4FS, i.e. considering the c massive or massless.
- In principle equivalent → In practice to assess the additional theory uncertainty we compare samples produced using both methods:
 - \Rightarrow FS uncertainty O(30%) of the yields in analysis categories.
- Uncertainty due to Scales and PDFs are smaller than FS uncertainty.
- ★ We also studied the impact of the choice of simulation input parameters on the two FS: ⇒ decide the best choice of theory scales (μ_R , μ_F , and R_{sh}).

Higgs to $\gamma\gamma$ analysis strategy

Diphoton decay channel:

- Golden channel (since 2012) with a very clear signature: two isolated photons. •
- All the possible diphoton candidates are constructed and the one with highest p_T is selected.
- Fit to the diphoton candidate mass spectrum.
- The signal shows as a **peak over a continuously falling background** from • non resonant $\gamma\gamma$ and $\gamma + jets$ events.
- To do an accurate measurement the photon reconstruction systematics • have to be kept under control.
- In our H+c we use the full Run 2 dataset (2016, 2017, 2018) of 137 fb^{-1} and we plan to include in the future also Run 3 data.

137 fb⁻¹ (13 TeV)

×10^₃CMS

Events / GeV H→γγ, m_⊥ = 125.38 GeV All Categories S/(S+B) weighted $\mu = 1.01$ Data - S+B fit ····· B component S/(S+B) Weighted 30 ±1σ ±2 σ 20 B component subtracted 1500 1000 0 -500 m_{γγ} (GeV)

10.1007/JHEP07(2021)027

Higgs to $\gamma\gamma$ analysis strategy

Statistical analysis:

- Signal modelling:
 - Higgs processes (H + c, ggH, VBF, ttH, VH) are modelled by fitting a sum of gaussian to the MC distribution.
- Background modelling:
 - non-Higgs background is modelled in a data driven way, fitting the data sideband to extract the continuum $\gamma\gamma$ functional form.
 - Multiple families of functions are considered, the best one is used in the fit.
 - An uncertainty coming from the choice of the one family over the others is calculated via the discrete profiling or "envelope" method.

Framework development

HiggsDNA (Diphoton NanoAOD):

- The CMS $H \rightarrow \gamma \gamma$ group decided to switch to a **new** (Python based) **common framework for Run 3 analysis**.
- * Run on flat NTuples (NanoAOD) that are centrally produced. \Rightarrow faster running time, columnar analysis.
- Under active development, I joined the group of the core developers to work on the common ingredients.
- I was able to produce the first complete analysis-like results reproducing a simplified version of the Run 2 cross section measurement:
 - Event selection.
 - Systematics variations (a few).
 - Statistical fit.

11-20-23

CMS $r = 0.949^{+0.128}_{-0.121}$ ΔIn Internal $r = 0.949^{+0.020}_{-0.023}(syst)^{+0.127}_{-0.119}(stat)$ N Vith systematics 2017 Data: 41.48 /fb Stat-only 3⊦ 2⊦ 0.8 0.7 0.9 1 1.1 1.2 1.3 CMS Work in progress 41.5 fb⁻¹ (13 TeV) S/(S+B) Weighted Events / Ge/ $H \rightarrow \gamma \gamma$, m_{.1} = 125.38 GeV $12 \vdash \vec{\alpha} = (\mu_{aaH}, \mu_{VBF}, \mu_{VH}, \mu_{top})$ Data - S+B fit B component ±1σ ±2 σ B component subtracted 500 300 120 130 140 150 170 180 m_{γγ} (GeV)

Charm tagging

Heavy flavour hadrons:

- Have long lifetimes (for HEP standards!) ~ ps:
 - They travel in the detector ~ mm before decaying.
- The Jets coming from HF quarks often contain soft non-isolated leptons.
- CMS is equipped with an excellent Inner Tracker system, the Pixel Detector:
 - 4 Barrel layers (built at PSI) and 6 Forward disks.
 - Excellent 3D spatial resolution ~ 50 μm .
 - Very high granularity ~ 124 M channels.

Charm tagging

Heavy flavour hadrons:

- Have long lifetimes (for HEP standards!) ~ ps:
 - They travel in the detector ~ mm before decaying.
- The Jets coming from HF quarks often contain soft non-isolated leptons.
- CMS is equipped with an excellent Inner Tracker system, the Pixel Detector:
 - 4 Barrel layers (built at PSI) and 6 Forward disks.
 - Excellent 3D spatial resolution ~ 50 μm .
 - Very high granularity ~ 124 M channels.
- Nonetheless one does not simply do Charm tagging:
 - Charmed hadrons have intermediate properties between bottom and light Jets.
 - B mesons decay can include D mesons.

11-20-23

Charm tagging

- charmed jets in CMS.
- It exploits more than 600 input variables:

11-20-23

Outline

Introduction:

- Motivation.
- State of the art.
- New approaches.

Ingredients:

- Monte Carlo simulation.
- $H \rightarrow \gamma \gamma$ method.
- Framework development.
- Charm tagging.

H+c analysis status:

- Analysis strategy.
- Preliminary results.

11-20-23

H+c analysis status:

Analysis strategy:

- We select events with: •
 - A good diphoton candidate.
 - At least one c-jet (DeepJet tagger score CvsL > 0.25).
- Main backgrounds: •
 - Irreducible "standard" Higgs production through gluon fusion (ggH).
 - Continuous diphoton background (CB) from $\gamma\gamma$ and $\gamma + jets$ events (as in the plain $H \rightarrow \gamma \gamma$ analysis).

H+c analysis status:

2D Categories:

- We separate events in 9 categories according to:
 - A Boosted Decision Tree (BDT) trained to distinguish H + c events from ggH.
 - A BDT trained to distinguish H + c events from the continuous $\gamma\gamma$ background.

BDT training:

- Separation is achieved exploiting the kinematics of the Photons and Jets in the event.
- ★ To address the irreducible ggH background we avoid using c-tagging information in the BDT training:
 ⇒ use low BDT score regions to constrain ggH directly from data.

H+c analysis status:

Preliminary results:

11-20-23

- The Run 2 analysis is still blinded, we'll be going to CMS internal review soon.
- The expected limit on k_c is of O(20).
- We're planning of improve the analysis strategy, moving to new, more performing taggers and • including Run 3 data.

Conclusions

Summary:

11-20-23

- * The strategy of the CMS H + c associated production analysis has been presented.
- The analysis presents some challenges (MC simulation, charm-tagging...) •
- other existing searches.
- The Run 2 analysis is still blinded, results coming soon.

Nonetheless it is a very interesting channel to explore, given the complementarity of this approach with

Conclusions

Summary:

- * The strategy of the CMS H + c associated production analysis has been presented.
- The analysis presents some challenges (MC simulation, charm-tagging...) •
- Nonetheless it is a very interesting channel to explore, given the complementarity of this approach with other existing searches.
- The Run 2 analysis is still blinded, results coming soon. •
- Stay tuned! *

Thank you!

Back up

09-05-23

Status: Common tools

HiggsDNA:

- The framework is ready to perform an analysis with Run 3 data.
 - Individual corrections/systematics may still need to be implemented, but the machinery is already in place alongside the main corrections.
 - Development of analysis specific tools is going on.

Diphoton ID BDT:

- Used to discriminate signal and fake γ background.
- In particular I'm focusing on the retraining of the BDT for Run 3:
 - Performed test on 2017 Data starting from nAOD.
 - Results are good but further comparisons with the old framework are needed:
 - ⇒ Performances of new framework training are better than with the Run 2 one.

Previous results

- Direct search for $VH(H \rightarrow c\bar{c})$ arXiv:2205.05550: recent improvements, most stringent limit on $H \rightarrow c\bar{c}$.
 - Upper limit $\mu_{VH(H \to c\bar{c})} < 14$ (7.6) observed (expected).
 - $1.1 < |k_c^{[*]}| < 5.5$ ($|k_c| < 3.4$) observed (expected) at 95% C.L. $[ATLAS: |k_c| < 8.5(12.4) \text{ obs (exp) at 95\% C.L.}]$
 - First observation of $Z \rightarrow c\bar{c}$ at a hadron collider (5.7 σ)
- ◆ Boosted $ggH(H \rightarrow c\bar{c})$ <u>HIG-21-012</u>:
 - $\mu < 38$ (45) observed (expected) at 95% C.L.
- * Exclusive $H \to J/\Psi + \gamma$ decays, clean signature, $J/\Psi \to \mu\mu$ but very rare process:
 - $BR/BR_{SM} < 220$ (170) observed (expected) at 95% C.L. [<u>ATLAS</u> : proj. for 3 $ab^{-1} \mu < \mu_{SM}$ at 95% C.L.]
- H differential measurements, variation of $p_T(H)$ as a function of k_c :
 - $-4.9 < k_c < 4.8 \ (-6.1 < k_c < 6.0)$ observed (expected) at 95% C.L.

CMS Observe Preliminary 68% expected ----- 95% expected Combined Expected 7.60 Observed 14.4 Merged-jet Expected 8.75 Observed 16.9 Resolved-jet Expected 19.0 Observed 13.9 0L Expected 12.6 Observed 18.3 1L Expected 11.5 Observed 19.1 2L Expected 14.3

Observed 20.4

0

5 10 15

20

25

30

35

[*]
$$k_c = y$$

Previous results

* Direct search for $VH(H \rightarrow c\bar{c})$ arXiv:2205.05550: recent improvements, most stringent limit on $H \rightarrow c\bar{c}$.

11-20-23

GEN-level results

H + c cross section for different scale choices:

- Large differences between 3FS and 4FS on the inclusive cross sections (up to ~2x).
- * To minimise uncertainty on nominal sample (4FS-FXFX) we studied the dependence of the X-section on MG scale parameters (μ_R , μ_F , R_{SH}).
- Uncertainties: μ_R/μ_F scale ~ 15%, PDF ~ 5-10%.

GEN-level results

H + c cross section for different scale choices:

- Large differences between 3FS and 4FS on the inclusive cross sections (up to ~2x).
- * To minimise uncertainty on nominal sample (4FS-FXFX) we studied the dependence of the X-section on MG scale parameters (μ_R , μ_F , R_{SH}).
- Uncertainties: μ_R/μ_F scale ~ 15%, PDF ~ 5-10%.
- Smaller (10-20%) differences for analysis-like phase space (>=1 gen-c-jet w/ p_T > 25 GeV).

Challenges

♣ Decay width of Higgs boson to quarks $\Gamma_{H \to q\bar{q}} = 3$

- BR $H \rightarrow b\bar{b} \sim 58 \%$
- BR $H \rightarrow c\bar{c} \sim 3\%$

Discriminate c-flavoured jets from background (b and light jets):

- D-mesons lifetime ~ 1/2 of B-mesons, less SV displacement.
- Discrimination wrt light jets more challenging than for b-jets.
- B-mesons often have decay chains via D-mesons, which can fake c jets.

11-20-23

$$3 \frac{m_q^2 \cdot m_H^2}{8\pi v^2}$$

Matching and Merging:

Merging (FXFX):

A separate tree-level calculation is performed for each parton multiplicity of interest. Soft and collinear divergences of the hard matrix elements are regulated by resolution cuts.

- Generate the process $[X]_{ME}$ + PS
- Generate the process $[X + 1 jet]_{ME} + PS$
- Generate the process $[X + 2 jet]_{ME} + PS [...]$

Making exclusive by reweighting with no-emission probabilities, i.e. how would PS have produced this configuration, and using normal shower in "soft region" below q_{merg} .

11-20-23

Double counting!

Borrowed from L. Gellersen

VH(Hcc): from **Bjorn Burkle**

<u>Constraints on κ_c </u>

- Can use results to place new constraints on κ_c
 - analysis)

$$\mu_{VH} = \frac{\kappa_c}{1 + \beta_{SM}(H \to cc) \times (\kappa_c - 1)}$$

• Observed 95% CL: $1.1 < |\kappa_c| < 5.5$

- Obtained via likelihood scan
- Expected 95% CL: $|\kappa_c| < 3.4$
- ALTAS obs. (exp.) $|\kappa_c| < 8.5$ (12.4)

Strongest limit to date!

- Now beating constraints from indirect measurements
- Comparable to ATLAS projection for HL-LHC: [ATL-PHYS-PUB-2021-039]

11-20-23

- While 4FS results lack logarithmic terms beyond the first few, 5FS results lack powersuppressed terms (mb/Q)n. Which of the two classes of terms is more important depends on the observable studied, that determines the dominant kinematic regime.
- If logarithms are large, the 5FS should be superior to the 4FS; if they are not, and thus powersuppressed terms might be important, then 4FS approaches should be preferred.
- One expects that, for processes and in regions of the phase space where both resummation and • mass effects are not dominant, the two approaches should give similar results.

Figure 1: Sample of LO Feynman diagrams for $b\bar{b}H$ production in the four-flavour scheme, for the two relevant classes of partonic subprocesses: (a) $gg \to b\bar{b}H$; (b) $q\bar{q} \to b\bar{b}H$.

from: arXiv:1409.5301v2

Figure 4: A sample of Feynman diagrams for $b\bar{b}H$ production in the five-flavour scheme: (a) LO; (b) one-loop; (c-d) real emission.