





## **CSCS Service Catalog on Alps: Compute & Data**

HPC-CH *Maria Grazia Giuffreda*, Miguel Gila, Luca Marsella
2023-10-05

## Alps - HPE Cray EX

#### Compute

1024 AMD Rome 7742 nodes 256/512GB

144 Nvidia A100 GPU nodes

32 AMD MI250x GPU nodes

Some thousands of GraceHopper modules

Slingshot network (200 Gbps injection)

100% liquid cooled

100+10 PiB HDD

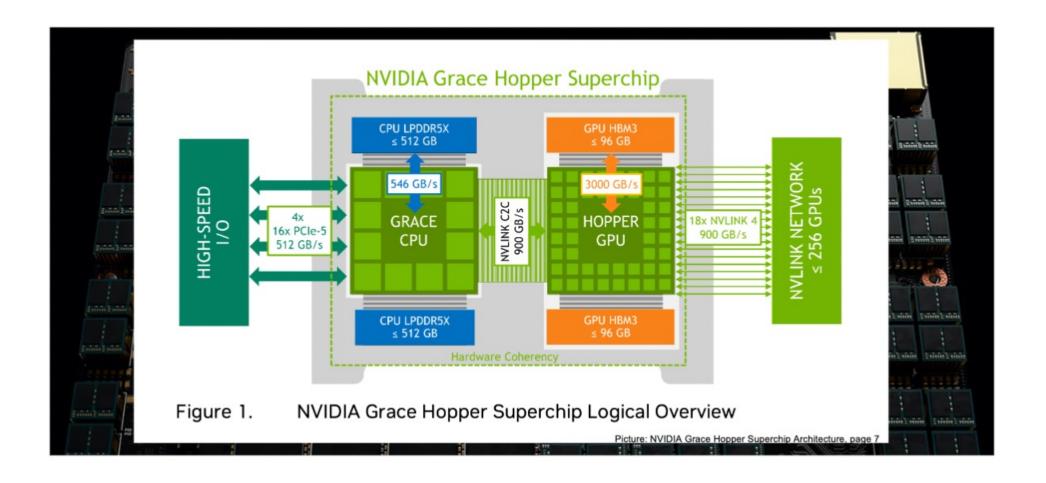
5+1 PiB SSD (RAID10)

#### **Data**

100s of PiB tape library








Water cooled blades





#### **Grace-Hopper superchip (GH200)**









Science and engineering requires more and more computer assisted experiments

- Simulations of physical phenomena
- Digital Twins
- Design engineering products
- AI/ML statistic solutions







HPC offers high-performance compute and data access

- Improves Time-to-Solution
- Managed efficiently data to compute
- Bare-metal performance, fixed amount of resources



Cloud offers high flexibility for business needs

- XaaS business logic as a service
- Economy of scale oversubscription of resources
- Virtualized resources, scalable to the infinite (and beyond)

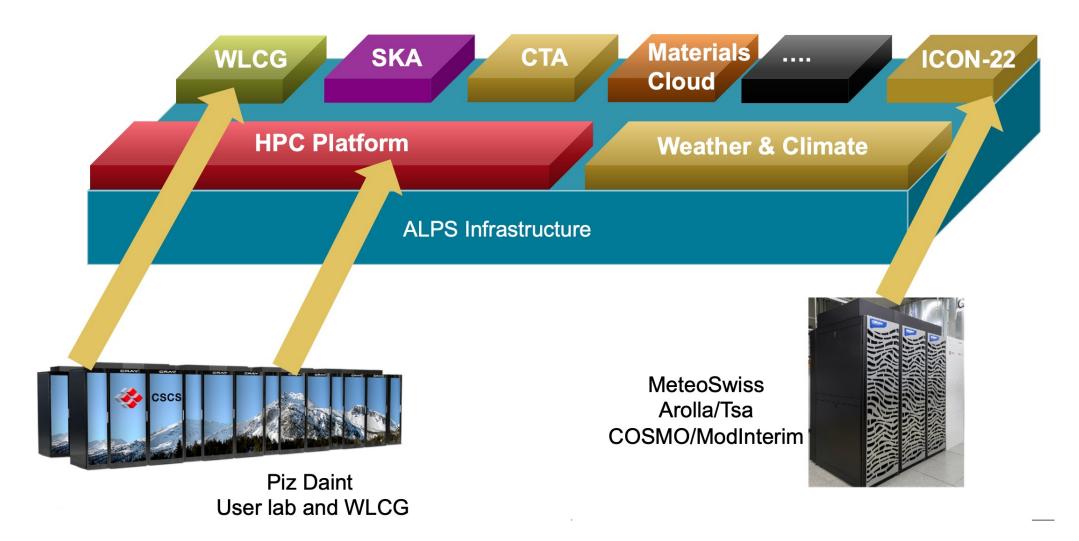






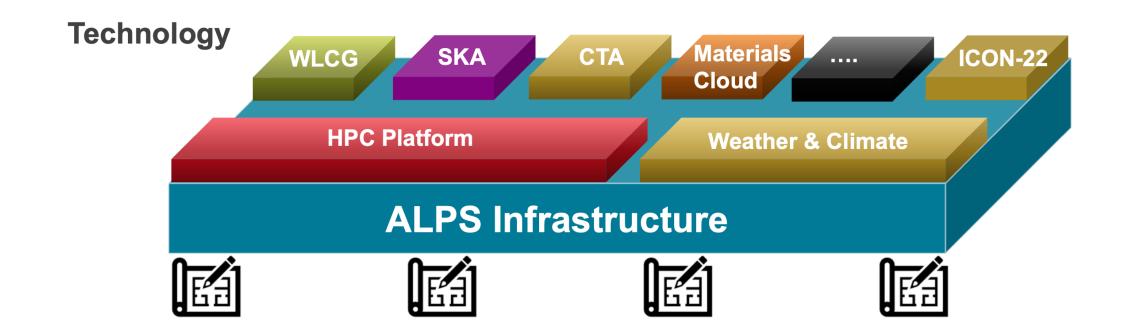
### **Versatile software-defined cluster (vCluster)**

HPC: High performance → vertically integrated stack → limited set of services


Cloud: Virtualization at scale → high flexibility → limited performance

vCluster is a set of services to ensure flexibility on top of HPC






### **Consolidation of platform**



Platform: a set of vClusters that answer a business/scientific need





User environments management

Build programming environments

Platforms and services management

Deploy platform services

Infrastructure as Code

Provision infrastructures with specific base images





### Separation of concerns with layers

Versatile software-defined cluster

- Platforms
  - Provisioning of services with Nomad and/or Kubernetes
  - Container as an abstraction layer for compute nodes
- Infrastructure as code
  - APIs and configuration management
  - Multi-tenancy: exclusive compute, network and storage segregation







# **Preparing for the future**

## **Preparing for the future**

#### **Performance and Flexibility**

Use container as a virtualization layers with OCI hooks

- Keep OS near bare metal Accelerators and High-speed network drivers
- Bring low-level libraries in the container with OCI Hooks
- Bring your own User Environment

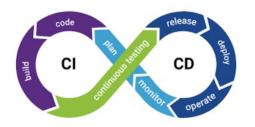


SARUS

- Decouple HPC programming environments from underlying layers
- UE can potentially become "just" an artifact mounted in the container
- HPC business logic
  - Web-facing API to access HPC resources (submit jobs, move data)
  - Web gateway








## **Preparing for the future**

#### AiiDA: a workflow engine for Materials science

- Provenance, Plug-in, HPC interface
- Porting the engine to W&C workflows

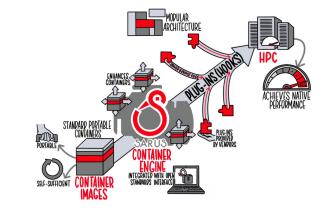




### Provide a web-facing CI/CD services

- Use FirecREST to spawn jobs from the web
- Enable federation of identities

### Testing framework with focus on performance


Integrate into the CI/CD test steps with FirecREST











#### Sarus runs Linux containers on HPC environments:

**SARUS** 

- Developed following the specific requirements of HPC systems
- Spawns isolated containers built by users for a specific application
- Extensible runtime by means of OCI hooks for custom hardware

Compatible with the Open Container Initiative (OCI) standards:

- Pulls from registries with OCI Distribution Specification or Docker
- Imports and convert images with the OCI Image Format (e.g. Docker)
- Uses an OCI-compliant runtime to spawn the container process

More information: <a href="https://user.cscs.ch/tools/containers/sarus">https://user.cscs.ch/tools/containers/sarus</a>





#### **User Environment**

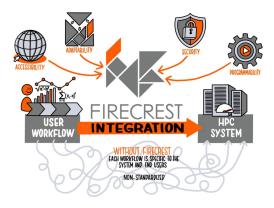


### Alps User Environment (uenv mount with compiler, MPI library,...)

- AI/ML: PyTorch, TensorFlow,...
- Materials Science: CP2K, QuantumESPRESSO, VASP,...
- MD Simulations: GROMACS, LAMMPS, NAMD,...
- Visualization: Paraview, Visit, VMD,...

### **Cray Programming Environment**:

programming environment on Cray systems with performance tools


#### More information:

https://confluence.cscs.ch/display/KB/User+Environments+on+Alps





#### **FirecREST**



FirecREST is a RESTful API for managing HPC resources at CSCS

**FirecREST** 

- Integrate FirecREST into web-enabled portals and applications
- Securely access CSCS services (job submissions, data transfer,...)

Users can make HTTP requests to perform the following operations:

- Basic system utilities like ls, mkdir, mv, chmod, chown,...
- Actions with the Slurm workload manager (submit, query, cancel jobs)
- Data transfer: internal (between CSCS systems) and external

More information: https://user.cscs.ch/tools/firecrest





## Regression testing with ReFrame

ReFrame is a framework for regression tests on HPC systems

- Abstract away the complexity of the interactions with the system
- Separate the logic of a regression test from the low-level details
- Users can write portable regression tests, focusing on functionality

CSCS provides ReFrame pre-configured for its systems:

- ReFrame can be accessed with module load reframe-cscs-tests
- The module provides the configuration as well as regression tests
- Users can run the tests already provided by CSCS staff

More information: <a href="https://user.cscs.ch/tools/reframe">https://user.cscs.ch/tools/reframe</a>





## Interactive computing with JupyterLab



JupyterLab is the web-based user interface for Project Jupyter

- Create and share documents with live code, equations, visualization, ...
- Same notebook document format as the classic Jupyter Notebook
- Ability to work with multiple documents using tabs or splitters side by side

CSCS JupyterLab powered by JupyterHub with a ready-made Python kernel

- You can add your own kernels based on your own virtual environments
- Multi-user hub spawning multiple instances of single-user Jupyter server
- Interactive execution of JupyterLab over single and multiple nodes

More information: https://user.cscs.ch/tools/interactive/jupyterlab







# **Storage & Data Strategy**

### Alps era storage specs and pictures

# In the process of being accepted

- Capstor
  - 100 PiB HPE ClusterStor E1000D
  - Spinning disks
  - Raw performance:
    - ~1TB/s
    - 300k Write iops | 1.5M Read iops
  - 8480 spinning disks (16 TB each)
  - 6 metadata servers
  - 11 full racks
  - Slingshot 11

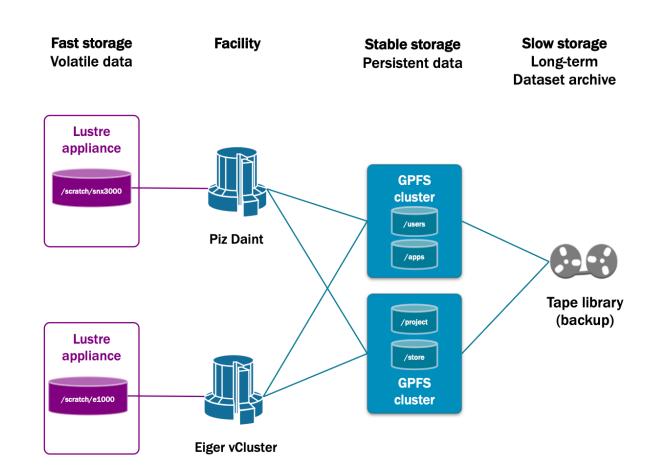


Accepted, rolling to users soon



3.2 PiB HPE ClusterStor E1000FAll flash

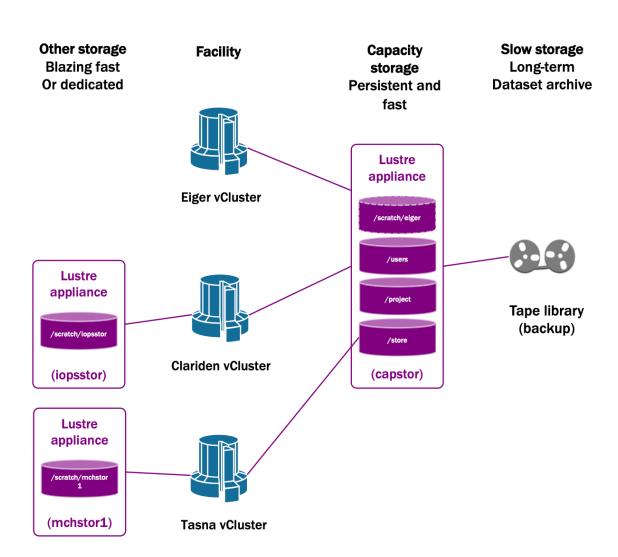
iopsstor


- Raw performance:
  - 240GB/s Write | 600 GB/s Read
  - 13.5M Write iops | 18.4M read iops
- 240 NVMe devices (30TB each)
- 2 metadata servers
- 1 rack
- Slingshot 11





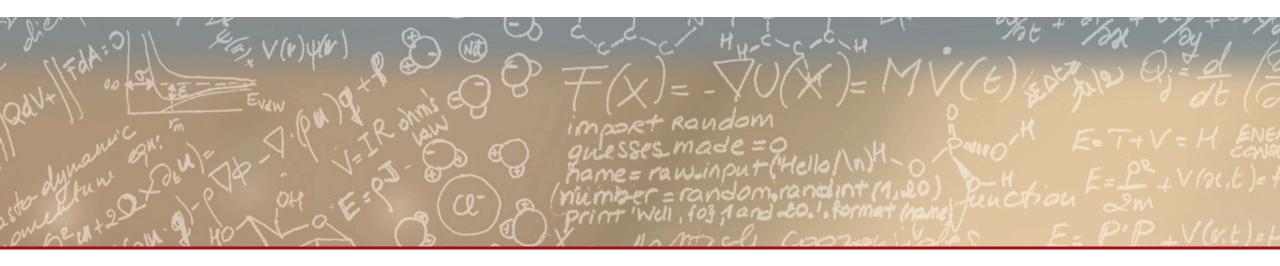
### **Storage in the Piz Daint era**


- Different storage backends depending on
  - Use-case
  - Performance envelope
  - Technology constraints
  - Historical reasons
- Persistent data and tape access stored on IBM Spectrum Scale (GPFS) clusters and a myriad of backends (SAS or FC disks, SAN, JBODs, etc.)
- Volatile data with fast access patterns on Lustre appliances





### Storage in the Alps era


- Consolidate backends and technologies
- Most storage areas will be based on Lustre, which is a much more mature product now
- Filesystems/spaces available:
  - Capstor
  - lopsstor
  - Purpose, dedicated filesystem
- Metadata ops for the different areas hitting different servers











# Thank you for your attention