

Unlocking the Potential of HPC Systems Use for Optimizing Job Queues, Minimizing Wait **Times, and Boosting Efficiency**

Thomas Jakobsche, Dr. Aurélien Cavelan, Dr. Rubén Cabezón, Dr. Iñaki Martínez de Ilarduya, Prof. Dr. Florina M. Ciorba

October 5, 2023 – hpc-ch forum on HPC and Data as a Service

Thomas Jakobsche

Aurélien Cavelan

Rubén Cabezón

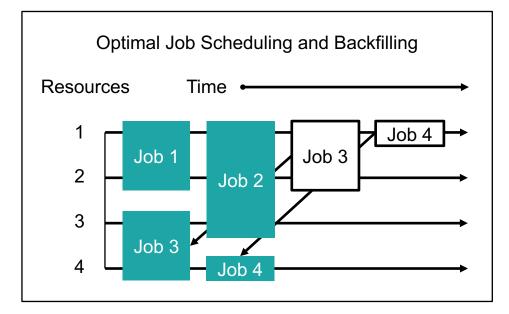
Iñaki Martínez de llarduya

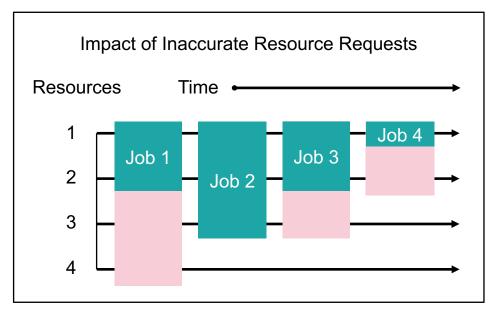
Florina M. Ciorba

- 1 Motivation, Dataset, and Job Queues
- 2 Why do HPC jobs wait in job queues?
- 3 Are queue selection and configuration appropriate?
- 4 How to automatically detect problem cases?
- 5 Open Questions, Future Work, and Take-Aways

Motivation

Problem Statement


Unnecessary job wait time caused by inaccurate resource requests and low job efficiency.


Challenge

A job's wait time is not always avoidable even on fully utilized systems – sometimes resources are busy.

Analysis Goal

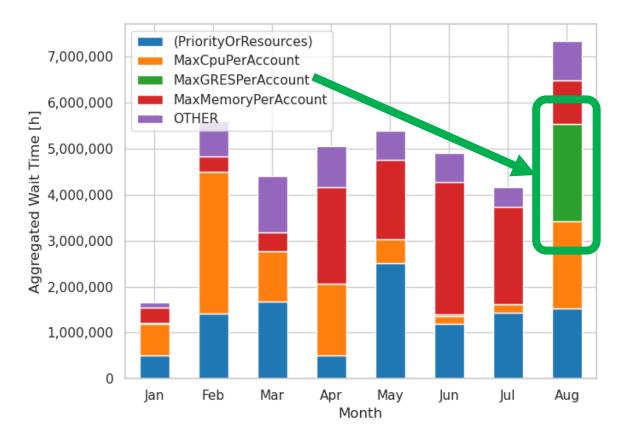
- Understand and avoid "unnecessary" job wait time caused by inaccurate resource requests.
- Improve system utilization and efficiency.

Dataset and Job Queues

Timespan	Jan – Aug 2023	Queues	%Jobs	%CPUh	%Backfill	%Wait Time
#Accounts	~150	30min	75.8%	12.3%	77.2%	34.1%
#Users	~500	6hours	22.0%	49.3%	52.1%	43.6%
#Jobs	~55 million	1day	1.9%	20.9%	30.4%	21.1%
CPU Hours	~20 million	1week	0.1%	12.6%	27.9%	1.0%
GPU Hours	~100 thousand	2weeks	>0.1%	0.8%	36.0%	>0.1%

Shorter queues offer access to more resources.

- 1 Motivation, Dataset, and Job Queues
- 2 Why do HPC jobs wait in job queues?
- 3 Are queue selection and configuration appropriate?
- 4 How to automatically detect problem cases?
- 5 Open Questions, Future Work, and Take-Aways

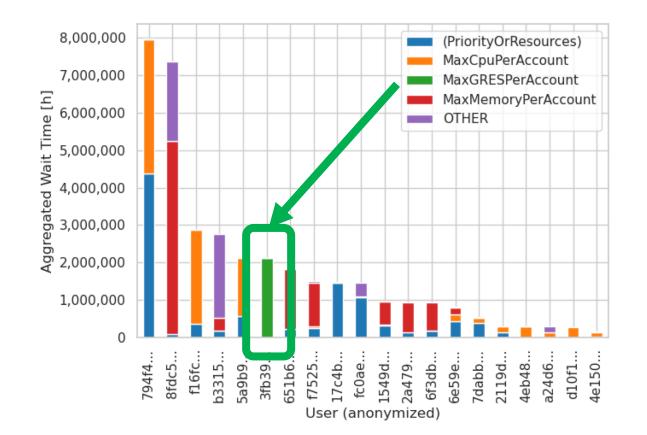

Relation between Job Resource Requests, Wait Time, and Backfilling

- We investigate positive and negative correlations for the top 10 users by wait time.
- More requested resources correlate with higher wait times and less backfilling.
- Requested memory plays a higher role than requested CPUs, even higher than Timelimit.

Pearson Linear Correlation Coefficient (-1 to 1)					
	Avg. Wait Time	Backfilling			
Avg. Timelimit	0.58	-0.69			
Avg. ReqCPUS	0.45	-0.63			
Avg. ReqMem	0.70	-0.87			

Wait Reasons per Month

- Slurm retains a wait reason per job other than
 Priority or Resources, in that case it stores "None".
- MaxCpuPerAccount and MaxMemoryPerAccount are limits per account and per queue.
- MaxGRESPerAccount is a GPU limit also per account and per queue.
- GPU limit wait time happened mostly in August 2023!

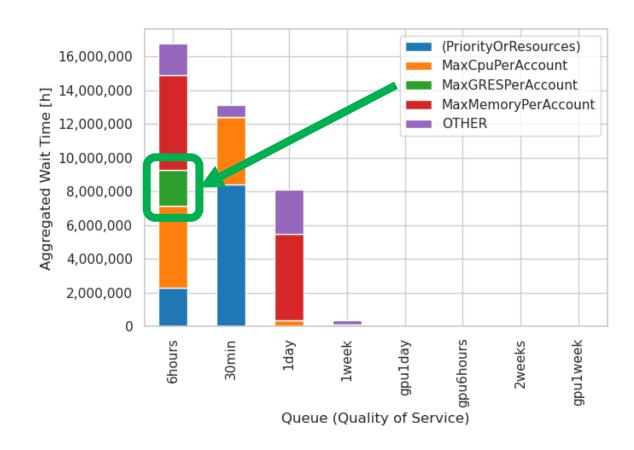


Wait Reasons by User

- The top ten users aggregate~80% of the total wait time.
- Users wait either due to CPU limits or Memory limits, but not both.

The GPU wait case becomes more interesting:

 \succ now we know it only affects one of the top users.



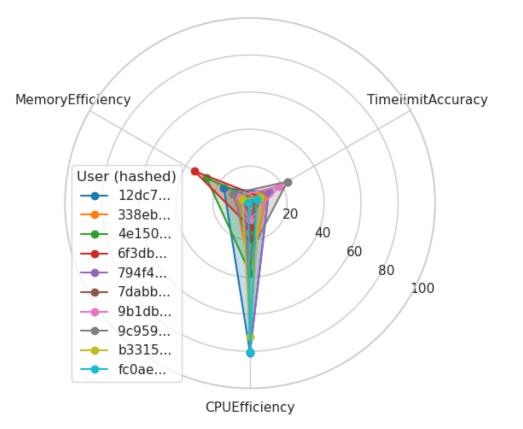
Wait Reasons per Queue

- ➢ 6hours queue experiences most of the wait time.
- ➢ 30min queue has almost no Memory limit wait time.
- Iday queue has almost no CPU limit wait time.

Conclusion to the GPU limit wait case:

- Jobs were submitted to the "normal" 6hours queue (limited to 16 GPUs) instead of the dedicated gpu6hours queue (access to 40 GPUs).
- The GPU limit wait case is a good example of unnecessary wait time due to misconfiguration.

- 1 Motivation, Dataset, and Job Queues
- 2 Why do HPC jobs wait in job queues?
- 3 Are queue selection and configuration appropriate?
- 4 How to automatically detect problem cases?
- 5 Open Questions, Future Work, and Take-Aways


Potential to Improve Appropriate Queue Submissions

- We consider submission to a shorter queue possible if the job execution time * 2 <= Timelimit of the shorter queue (100% buffer/overestimation).
- The majority of the jobs from 6hours, 1day, 1week, and 2weeks queues could have been submitted to shorter queues.
- We know that submission to shorter queues is desirable, due to more access to resources, more backfilling and lower job wait times.

Submission Queue	Number of Jobs	% of Jobs where Submission to Shorter Queue was Possible
30min	39'820'630	already shortest queue
6hours	11'545'374	80.7%
1day	1'000'464	94.2%
1week	54'341	93.0%
2weeks	8'26	90.1%

Potential for Appropriate Resource Requests

- The plot shows the top 10 users by CPUh.
- We observe high potential for these users to improve TimelimitAccuracy and MemoryEfficiency.
- The problem with overestimating memory
 - the job waits longer itself
 - the job blocks memory for other jobs
 - this makes job scheduling difficult
 - ultimately degrades the service for every job

- 1 Motivation, Dataset, and Job Queues
- 2 Why do HPC jobs wait in job queues?
- 3 Are queue selection and configuration appropriate?
- 4 How to automatically detect problem cases?
- 5 Open Questions, Future Work, and Take-Aways

Appropriate Queue Recommendation

- Reporting TimelimitAccuracy for individual jobs may not be the best approach to support users (see tools: sacct, jobstats, reportseff, etc.).
- We identify working directories that are the origin of overestimated jobs.
- Users potentially benefit and adapt to more coarse grained queue recommendations.

WorkDir (hashed)	#Jobs	Max Exec. Time	Queue Chosen by User	Recommended Queue
e711e	101'077	0:03:33	6hours	30min
b9239	48'833	0:01:18	6hours	30min
3b843	25'686	1:28:59	1day	6hours

Detecting Problem Cases that Aggregate Specific Wait Time

- It can be an indication of misconfiguration if all jobs from a specific working directory are waiting only for one reason.
- Indeed we see a return of the GPU limit wait case! 99% of the wait time of all jobs from this working directory are due to GPU limits. Which could be avoided by submitting to the appropriate GPU queue.
- This form of reason-based analysis can support the detection of misconfiguration and problem cases.

WorkDir (hashed)	#Jobs	Wait Time [h]	Top Reason for 99% of Wait Time
a48a2	13'608	2'107'958	MaxGRESPerAccount
5bc88	8'206	290'445	MaxCpuPerAccount
d29c0	21'125	222'892	MaxMemoryPerAccount

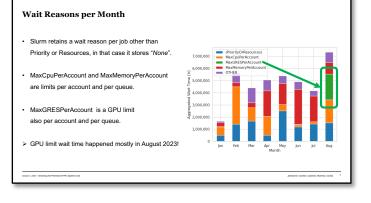
- 1 Motivation, Dataset, and Job Queues
- 2 Why do HPC jobs wait in job queues?
- 3 Are queue selection and configuration appropriate?
- 4 How to automatically detect problem cases?
- 5 Open Questions, Future Work, and Take-Aways

Open Questions and Future Work

Open Questions

- What are the reasons for overestimation?
 - a) Fear of timeouts?
 - b) Misconfiguration/application crashes?
 - c) "Mindlessness"?
- How to incentivize users to submit more accurate resource requests?
 - a) Command-line tool support?
 - b) Include Accuracy/Efficiency into Job Priority?

Future Work


- Fine tune Queue CPU and Memory limits.
- Investigate the impact of overestimation on blocking nodes for other jobs.
- Develop user support tools to automatically detect
 - a) misconfigured jobs (GPU jobs on CPU nodes),
 - b) bulk submissions to inappropriate queues,
 - c) aggregation of specific wait time by reason.

Take-Away Messages

Backfilling works as intended

Timespan	Jan – Aug 2023	Queues	%Jobs	%CPUh	%Backfill	%Wait Time
Accounts	~150	30min	75.8%	12.3%	77.2%	34.1%
#Users	~500	6hours	22.0%	49.3%	52.1%	43.6%
#Jobs	~55 million	1day	1.9%	20.9%	30.4%	21.1%
CPU Hours	~20 million	1week	0.1%	12.6%	27.9%	1.0%
GPU Hours	~100 thousand	2weeks	>0.1%	0.8%	36.0%	>0.1%
			Shorter queues	offer access to	more resources	-

Different job wait reasons

Appropriate queue submission

Potential to Improve Appropriate Queue Submissions We consider submission to a shorter queue Number of % of Jobs where Submission to Shorter Queue was Possible Queue possible if the job execution time * 2 <= Timelimit Jobs of the shorter queue (100% buffer/overestimation). 39'820'630 already shortest queue 30mir The majority of the jobs from 6hours, 1day, 1week, 6hours 11'545'374 80.7% and 2weeks queues could have been submitted to shorter queues. 1day 1'000'464 94.2% We know that submission to shorter queues is 1week 54'341 93.0% desirable, due to more access to resources, more backfilling and lower job wait times. 90.1% 2weeks 8'26 notes 1, 2023 - Unitating the Polential of HPC Bydems Use Jakobache, Cavelan, Cabecon, Mar

Low resource request accuracy

The plot shows the top 10 users by CPUh.	
We observe high potential for these users to improve TimelimitAccuracy and MemoryEfficiency.	MemoryEfficiency TimeirmitAccuracy
 The problem with overestimating memory the job waits longer itself the job blocks memory for other jobs this makes job scheduling difficult ultimately degrades the service for every job 	User (nashed) + 33862 + 33862 + 73462 + 73482 + 91953 + 91953 + 91953 - 7044 + 91953 - 7044 - 73482 - 73482

Automatically detect problem cases

۶I	t can be an indication of misconfiguration if all jobs				
	rom a specific working directory are waiting only for one reason.	WorkDir (hashed)	#Jobs	Wait Time [h]	Top Reason for 99% of Wait Time
		a48a2	13'608	2'107'958	MaxGRESPerAccount
	ndeed we see a return of the GPU limit wait case! 99% of the wait time of all jobs from this working	5bc88	8'206	290'445	MaxCpuPerAccount
	directory are due to GPU limits. Which could be avoided by submitting to the appropriate GPU queue.	d29c0	21'125	222'892	MaxMemoryPerAccou

Opportunity to improve scheduling

Motivation	Optimal Job Scheduling and Backfilling Resources Time
 Problem Statement Unnecessary job wait time caused by inaccurate resource requests and low job efficiency. Challenge 	1 2 3 4 3 4 3 4 3 4 3 3 3 3 3 3 3 3 3 3 3
A job's wait time is not always avoidable even on fully utilized systems – sometimes resources are busy.	Impact of Inaccurate Resource Requests Resources Time
Analysis Goal Understand and avoid "unnecessary" job wait time caused by inaccurate resource requests. Improve system utilization and efficiency.	1 2 3 4

Unlocking the Potential of HPC Systems Use for Optimizing Job Queues, Minimizing Wait **Times, and Boosting Efficiency**

Thomas Jakobsche, Dr. Aurélien Cavelan, Dr. Rubén Cabezón, Dr. Iñaki Martínez de Ilarduya, Prof. Dr. Florina M. Ciorba

October 5, 2023 – hpc-ch forum on HPC and Data as a Service

Thomas Jakobsche

Aurélien Cavelan

Rubén Cabezón

Iñaki Martínez de llarduya

Florina M. Ciorba