SELECTION OF ENERGY CALIBRATION SOURCES FOR Be^9

Quartet - Technion - Ofir Eizenberg

MAIN IDFA

Needed statistics to achieve energy precision

Considering available sources

NEEDED ENERGY PRECISION

- Current status of radius uncertainty:
- Using Mu-Dirac to calculate muonic Be x-ray spectra
- Mu-Dirac results for 2P-1S with Uehling :

$$E_{sphere} = E_{fermi} = 33393 \ eV \quad ; E_{point} = 33478 \ eV$$
$$\Delta (E_{sphere} - E_{point}) = 85 \ eV = F \cdot r^{2}$$

 $\frac{o_r}{2} \sim 10^{-2}$

u-Laser

Taken from [2] Quartet FFK 2023

- Uncertainty in energy from radius: $\sigma_E = 2 \cdot F \cdot r^2 \cdot \frac{\sigma_r}{r} = 1.7 \ eV$
- We can reach better accuracy using statistics and calibration.
- (Screening effect, self-energy, Kallen-Sabri, and Nuclear polarization are sub-eV corrections)

STATISTICS OF MUONS

- Muon rate at "Default momentum" of 28 MeV/c: $10^4 \cdot Hz$
- Efficiency + Solid angle few 10^{-4} : $\frac{10^4}{10^4} \sim few Hz$
- Max total rate on detector: 0.4 photons/double-pixel=12 Hz
- With 10 eV resolution, can significantly improve radius with few 100 events, **a few minutes**
- Can go to lower energy if needed (GEANT4 simulation in progress)

CALIBRATION

- Integration time calculation for Cs^{137} for example:
 - Energy uncertainty goal $\sigma_E = 0.5 \ eV$
 - Number of samples required $N = \left(\frac{16}{0.5}\right)^2 = 10^3$ samples
 - Assume source load on detector is 10 Hz.
 - Integration time required given 4% intensity 40 [minutes]

• Assumed 16 [eV] FWHM linewidth and 9[Hz] of x-ray rate.

Source	Closest Energy Line [eV]	Energy Uncertainty [eV]	Intensity [%]	Other Lines [eV]	Amount of Samples [#]	Time Needed [<i>Hours</i>]
Cs ¹³⁷ (Ba x- rays)	32193	0.07	3.76	31816.61(6) 36303 3(1)	1000	0.6
				36377.45(8)		

X-rays from ¹³⁷ Cs (30.07 y 3)						
E (keV)	I (%)	Assignment				
31.452	0.000263	8 Ba K _{α3}				
31.817	2.04 5	Ba $K_{\alpha 2}$				
32.194	3.76 8	Ba K _{α1}				
36.304	0.352 8	Ba K _{β3}				
36.378	0.680 15	Ba K _{β1}				
36.652	0.0079 <i>3</i>	Ba K _{β5}				
37.255	0.215 5	$Ba K_{\beta 2}$				
37.349	0.0481 20	Ba K _{β4}				

POTENTIAL SOURCES

Source	Closest Energy Line [<i>eV</i>]	Energy Uncertainty [eV]	Abundance [%]	Other Lines [eV]	Amount of Samples [#]	Time Needed [<i>Hours</i>]
<i>Cs</i> ¹³⁷	32193	0.07	4	31816.61(6)	1000	0.7
(Ba x-rays)				36303.3(1)		
				36377.45(8)		
Ba ¹³³	34919.7	0.6	6	306254.4(4)	1000	0.5
(Cs x-rays)				30973.1(4)		
	34987.3	1.0	12	35821.7(3)		
				35988.0(1)		

* Taking into account 10 [eV] FWHM resolution and 9[Hz] of x-ray rate.

POTENTIAL SOURCES

Source	Closest Energy Line [eV]	Energy Uncertainty [eV]	Abundance [%]	Other Lines [<i>eV</i>]	Amount of Samples [#]	Time Needed [<i>Hours</i>]
Ce ¹³⁹ (La x-	33442	0.3	24	37720.6(6)	1000	0.1
rays)				37801.4(5)		
Not in PSI	33034	0.3	44	38071.4(5)		
				38730.3(1)		
Am ²⁴¹ (gamma line)	33196	0.3	0.12	26344.6(2)	400	9
				59540.9(1)		

SUMMARY

chosen material*

BIBLIOGRAPHY

- [1] Sturniolo, S, Hillier, A., "Mudirac: A Dirac equation solver for elemental analysis with muonic X-rays." X-Ray Spectrom. 2020; 1–17. <u>https://doi.org/10.1002/xrs.3212</u>
- [2] Quartet FFK 2023 (Still in progress)
- [3] W. Nortershauser, "Nuclear Charge Radii of https://arxiv.org/pdf/0809.2607.pdf
 ^{7,9,10}Be and the one-neutron halo nucleus https://arxiv.org/pdf/0809.2607.pdf
- [4] L. Gerchow, "Germanium array for non-destructive testing (GIANT) setup for muon-induced x-ray emission (MIXE) at the Paul Scherrer Institute.", Rev Sci Instrum 1 April 2023; 94 (4): 045106.

• [5]

