Pienu Overview and Update

R.E. Mischke 16 October 2023

Outline

- Brief description of the experiment
 - Reminder: the goal of Pienu is to measure

$$BR = \frac{\pi \to e \nu(\gamma)}{\pi \to \mu \nu(\gamma)}$$
 to 0.1%

- schematic of the detector
- triggers and special runs
- Status of the analysis
- A list of previous presentations is in the Appendix
 - (apologies to those who have seen the previous talks)

The Pienu Experiment at TRIUMF

Beam:

60kHz pions @ 75 MeV/c $\pi:\mu:e=85:14:1$

Detector: [1]

Acceptance: 20% Plastic Scintillators Nal(Tl) + Csl Calorimeter Wire Chambers Silicon Strips

Energy resolution:

2.2% FWHM @ 70MeV Temperature Stabilization Data taking: 2009-2012

[1] A. Aguilar-Arevalo et al., Nucl. Instrum. Methods Phys.Res., Sect. A 791, 38 (2015).

Triggers

- The physics trigger = incoming pion*outgoing positron B1·B2·Tg * T1·T2
- Physics triggers: rate (Hz) purpose
 Early (5-40 ns) 160 enhance π→ev
 - Early (5-40 ns) 160
 - Prescale (1/16) 170
 - TIGC (E>~48 MeV) 240
- Other triggers:
 - Ecalib (beam positrons)
 - XeTrig 2
 - CslSum (cosmics) 15

counter calibrations gain monitor CsI calibrations

enhance high energy

unbiased

Special datasets

- In addition to the primary physics data with simultaneous support triggers, several special datasets were interspersed, including:
 - positron beam for the tail fraction
 - T1 and T2 inefficiency
 - muon runs for the t0 correction
 - beam momentum scans for the pion stop location
 - cosmic-ray runs with beam off
 - positron-beam momentum scans

Status of the Analysis (part 1)

- Analysis of the primary data has been stable for some time
- Additional early data with Bina only is under analysis
 - the acceptance is restricted due to shower leakage at larger angles
- The muon decay-in-flight correction has been reevaluated yielding a substantial change in the result

Status of the Analysis (part 2)

- High statistics MC files are being generated
 necessary to study the acceptance correction
- Thus far, all systematics checks have been passed successfully (BR vs R, BR vs Ecut, Ntrk = 1, etc.)
- Evaluation of systematic uncertainties continues to be refined as we prepare to unblind the result

Importance of the Lineshape data

- There are two versions of the Pienu MC:
 - Primary MC: is intended to reproduce the Pienu detector with an incident pion beam ($\pi \rightarrow ev$ and $\pi \rightarrow \mu v \rightarrow \mu evv$ modes are run separately)
 - Lineshape MC: used an incident positron beam with most detector elements upstream of the calorimeter removed (so the calorimeter could be rotated)
- By matching the Lineshape MC to data, the calorimeter response from the primary MC can be validated

slide from Tristan's talk at the RPD workshop, Santa Cruz, Oct22

Positron Beam Data

70 MeV/c positron beam

Many detector elements removed: B1, B2, Tg, T1, S1, S2, S3

Data taken at ten angles

Tail fraction increases significantly as a function of angle

Requires clean positron beam: PIENU beam had ~1% momentum spread, low-energy tail intrinsic to beam <= 0.01%

Improvements to the Lineshape analysis

- Refinements in the data analysis have improved the quality of the result and slight changes in the measured tail fractions
- Much effort has been invested this year to better match the MC for the Lineshape to the data
- One example is to include material previously neglected, e.g. the beam vacuum window
 - this improved the agreement for the tails of the spatial distribution, which is most important for 48° due to shower leakage

Match of MC to data

- A comparison of the spatial distributions of events for MC and data is shown for the smallest (0°) and largest (48°) angles
- WC3 is the wire chamber just upstream of Bina

Physics Lists in Geant4

- There was a long-standing problem that different versions of Geant4 yielded different values for the tail fraction.
 - an earlier version of Geant4 (9.6) agreed better with the data
 - a more recent version (10.2), with presumably improved EM physics, gave results significantly larger than the data at forward angles.
- We have now upgraded the MC to version 10.06, which allows a choice of EM models

Compare EM physics versions

- EM physics in Geant4 has multiple choices available
 - opt0: default, which used the Urban model for multiple scattering
 - opt4:
 EMZ means that the default electromagnetic physics is substituted by the configuration providing the most accurate simulation of electromagnetic physics, including the GoudsmitSaunderson model for multiple scattering
 - Penelope (Penetration and ENErgy LOss of Positrons and Electrons) is a a general-purpose Monte Carlo code system for the simulation of coupled electron-photon transport in arbitrary materials. PENELOPE covers the energy range from 1 GeV down to, nominally, 50 eV.

Compare Physics Lists

Appendix

Previous presentations

On DocDB

 Trigger Overview 	20Aug21	Tristan
– Pienu Overview	22Feb22	Tristan
 Systematics for the Pienu Analysis 	1Mar22	Dick
 follow-up Discussion Google Doc 	5Mar22	Dick
 Monte Carlo versions for Pienu 	6Sep23	Dick

- Rare Pion Decay Workshop Santa Cruz (6Oct22)
 - Systematics from old muons
 Dick
 - Tail Correction and Muon Decay-in-flight

Tristan