Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of Washington



## **Overview of piE5 Beamline**

#### Peter Kammel

- Intro
- Test beam 2022 results
- Modelling the beamline
- Major upgrade studies

## **Requirements Phase I**



- Rate
  - 300k  $\pi$ /s stopped in ATAR
- Momentum bite
  - $-\Delta p/p < 2\%$
- Momentum
  - lowest p preferred 55-70 MeV/c
- Spot size
  - smaller than ATAR Size of 20mm x 20mm
- Particle contamination
  - $\mu/e$  less than 10% of  $\pi$



 $R_{e/\mu}(\text{Exp}) = 1.23270(230) \times 10^{-4}$ 





# Requirements and achieved results from test run



- Rate 300k π/s stopped in ATAR Momentum lowest p preferred 55-70 MeV/c
- Momentum bite  $\Delta p/p < 2\%$
- Spot size smaller than ATAR
- Particle contamination  $\mu/e$  less than 10%

ok at 65 MeV/c



Not yet, requires additional magnets, beam modeling and design

#### Take away

- Serious effort and resources for beam team required, beam design and simulation
- Student can make a big difference, see Stefan's phase space analysis
- New machine learning approach, very promising but additional beam design effort required

( ::)

 $(\underline{0}\underline{0})$ 

 $(\cdot \cdot)$ 

#### 

ISW

TgE

### piE5 @ PSI - World's Brightest Stopped Pion Beam

![](_page_3_Figure_2.jpeg)

- carefully studied for fundamental muon experiments
- still surprises for pions, unique PIONEER requirements

experimenters have full control over beam line (after first bend)

![](_page_4_Picture_0.jpeg)

## Simple Transport Model

 $\pi^+$ 

- Compare  $\Delta p/p = 3/0 \%$
- 1<sup>st</sup> order only
  - 2nd order diverges
  - other discrepancies to PIONEER Run '22

- upstream part in shielding
  - indirect diagnostics with slits

![](_page_4_Figure_8.jpeg)

MEG tune adjusted to PIONEER geometry, P-R Kettle

extraction, momentum selection and achromat

particle separation, focus on target

### Puzzles from beam test

 Explore/explain most striking puzzles, problems

![](_page_5_Figure_2.jpeg)

PI

# Summary of findings

- Final focus
- Rate: 633 kH / 46 % in ATAR Box
- Mean X = 0.3 mm
- Mean Y = 0.2 mm
- Sig X = 23 mm
- Sig Y = 10.1 mm

![](_page_6_Figure_7.jpeg)

• PID

![](_page_6_Figure_9.jpeg)

Dispersion? at target

lacksquare

![](_page_6_Figure_11.jpeg)

- Δp/p two methods
  - TOF
    - 16m beamline
    - 1% Δp/p ~ 1 ns (65 MeV/c)
  - Direct stopping measurement with range curve
    - pion signal amplitudes with different degraders
    - use  $\pi \rightarrow \mu$  sequence to identity stops

#### analysis needed

#### Oct 2023

PI

## G4BL steps

#### More resource links in backup

![](_page_7_Figure_2.jpeg)

- brute force high-statistics runs of (inefficient) pion production 25k ev/s, but only 3E-5 eff.
- phase space stored at virtual plane before first piE5 quad

| AHSW41    | QSF41<br>HSC41 | QSF42 | QSF43 | HSC42 | QSF44 |       | ColPiE5 | QSF45 | HSC43 | QSF46 | QSF47 | HSC44 | QSF48<br>ASTapertin | ASTfieldmap | ACOSICIAMON | Ascrieidmap | ASCapertOut | QSB41 | QSB42 | QSB43 | SEP41_plates | OSK41 | QSK42 | QSK43 | CALOFNTR |     | CALOCNTR  |
|-----------|----------------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|---------------------|-------------|-------------|-------------|-------------|-------|-------|-------|--------------|-------|-------|-------|----------|-----|-----------|
| • •• • •• | ••• • •        | •     |       | FSH41 | ••    | E543U | •       | •     | FSH43 | •     | •     | •     | ••                  | •           | • •         | •           | •           | •     | •     | •     | •            | •     | •     | •     | •        |     | •         |
| 0.0       | 2              | 2.5   |       |       |       | 5.0   | )       |       |       | 7     | 7.5   |       |                     | 10          | 0.0         |             |             |       | 12    | 2.5   |              | 15.   | 0     |       | 1        | 7.! | 5<br>z (m |

- Transport through channel to target
  - Slower, but more efficient 1060 ev/s, 327E-5 eff.
  - reasonable parameter variations guided by experimental tunes

![](_page_8_Picture_0.jpeg)

## Initial studies, January 2023

![](_page_8_Figure_2.jpeg)

no strange beam effects a'la Zack

![](_page_9_Picture_0.jpeg)

### **Global properties: Envelopes**

![](_page_9_Figure_2.jpeg)

## Higher order effects: X vs X'

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

Peter Kammel - piE5 overview

11

## Higher order effects: X vs P<sub>z</sub>

![](_page_11_Picture_1.jpeg)

very preliminary

![](_page_11_Picture_5.jpeg)

# Major upgrade: Extend Beam with Two Vertical Foci

- For particle separation and target focus two separate foci required, so that background is rejected outside of detector
  - $-1^{st}$  focus separates particles after ExB velocity filter and reject  $\mu$  and e on collimator
  - $-2^{nd}$  focus is a double x/y focus aimed at ATAR
- First attempt with s-t promising
  - large final magnet
  - phase space
    - initial x: 2.40 π mm r y: 0.09 π mm r
    - promising final focus

![](_page_12_Figure_9.jpeg)

![](_page_12_Figure_10.jpeg)

-R

## Upgrade: Smaller Momentum Bite

![](_page_13_Picture_1.jpeg)

#### exercise in history

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

## Beam Development Plan

- Higher order calculations and corrections
  - modern programs: G4BL,COSY
  - more careful G4BL
    - are non-linear effects correct and real?
- Beamline
  - downstream
    - easier as more accessible
    - measure phase space right after bends
    - Based on PIONEER run '22, we cannot improve quality with downstream tuning alone
  - upstream (Andy et al)
    - systematic simulation campaign
    - systematic measurement campaign to verify simulation and magnet characteristics
    - phase space measurements need large tracker

- Run analysis of low hanging ? fruits
  - Δp/p
  - dispersion dependencies
  - Major upgrade studies needs beam designer
  - Two vertical foci
  - Large final magnet for small focus?
  - upstream retune for large dispersion
  - dE/dx  $\pi/\mu/e$  separation?

![](_page_14_Picture_25.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

• 10/14/2023 1:25 PM

## G4BL overview

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

#### 

# Good Enough Focus ?

- Beam behaves as expected (basic p scaling)
  - we measured 28 MeV/c muons and
  - pions of 55, 65 and 75 MeV/c
- Pions better focus than surface muons
- But only 46% of beam in ATAR box
- AST/ASC combination not problematic

Not yet

![](_page_17_Figure_9.jpeg)

- Rate: 633 kH / 46 % in ATAR Box
- Mean X = 0.3 mm
- Mean Y = 0.2 mm
- Sig X = 23 mm
  - Sig Y = 10.1 mm

Kammel - Rare Pion Decay Workshop

#### 

# Sufficient Rate and Small Δp/p ?

- Cannot answer without determination of  $\Delta p/p$
- First impression
  - 55 MeV/c insufficient
  - 65 MeV/c enough rate
- Longitudinal phase space (i.e. Δp/p), two methods being analyzed

![](_page_18_Figure_7.jpeg)

#### Direct stopping measurement with range curve

- pion signal amplitudes with different degraders
- use  $\pi \rightarrow \mu$  sequence to identity stops

![](_page_18_Figure_11.jpeg)

#### Time of flight

- 16m beamline
- 1% Δp/p ~ 1 ns (65 MeV/c)

| p (MeV/c) | 55     | 65     | 75     |
|-----------|--------|--------|--------|
| TOF (ns)  | 145.57 | 126.42 | 112.75 |
|           |        |        |        |

run588

![](_page_19_Picture_0.jpeg)

### **Particle Separation Good Enough?**

**No** location of collimator !

Separator HV can be increased

![](_page_19_Figure_4.jpeg)

TOF (ns)

In area restricted to ATAR (optimistic accounting) e: 25.0% µ: 32.1%

π: 42.9%

![](_page_19_Figure_8.jpeg)

![](_page_20_Picture_0.jpeg)

Patrick

#### **Dispersion at Target Location?**

../../processed/run307/data/subrun0/WD038\_8.root 38\_12

![](_page_20_Figure_3.jpeg)

TOF changes when when detector moves 5 cm to the left

X=X(P), significant dispersion D at target location, deteriorates focus.

![](_page_21_Picture_0.jpeg)

#### **Dispersion at Target Location?**

![](_page_21_Figure_2.jpeg)

$$\frac{dTOF}{dx} \approx 0.9 \text{ ns/cm}$$

D~1 cm/% similar to dispersive section??

## Higher order effects: X vs X'

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

Peter Kammel - piE5 overview

![](_page_23_Picture_0.jpeg)

#### **Dependence on tune**

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

#### **Dependence on tune**

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)