
Data Acquisition (DAQ)

Jack Carlton University of Kentucky

g-2 DAQ (Modified for One Crate Support)

- Retains g-2 hardware, but made more flexible
- Same general process:
 - Communicate with µTCA crate, initialize hardware
 - Read TCP packets from µTCA crate
 - Write to midas data banks

Midas Framework

- C/C++ (mostly) package of modules for
 - run control,
 - expt. configuration

Ξ 0

Status Transiti

ODB Messad

Chat Alarms

Program Buffers

MSCB Sequer

Config Help

ChanM Straw

WFD5 Collima

FiberHa Laser

StrawT AMC13

CaloSC

- o data readout
- event building
- data storage
- \circ slow control
- alarm systems
- Etc.
- Can link with custom software

	C		Run Status					
	Run 54206	Start: Wed Se	Sep 21 08:51:24 2022		Running time: 290h12m46s			
	Running Stop Pause	Alarms: On	Restart: On	D	Data dir: /dataSSD1/gm2			
	undefined							
			F and a second					
			Equipment					
	Equipmen		Status			Data[MB/s]		
	EB	Ebui	lder@g2be1.fnal.gov	25.373M	12.0	0.001		
	MasterGN	12 Mas	terGM2@g2be1-priv	25.373M	28.6	0.003		
ker Settings	AMC130	0 AM	C1300@g2aux-priv	25.373M	28.0	0.038		
Control								
Control								
kerPower								
eadMonitor								
eadMonitor								

Hardware Requirements

- <u>Micro Telecom Computing (µTCA) crate</u> with Modules:
 - Waveform Digitizers (WFD5(s)/Rider(s))
 - Controller (FC7)
 - MicroTCA Carrier Hub (MCH)
 - Advanced Mezzanine Card (AMC)
- "Frontend" computer with available PCIe slots for the following...
- Meinberg PCIe Clock Card
 - Custom connector
- 10 Gigabit Ethernet Network Interface Card (10GbE NIC)
 - SFP+ connectors
- Graphics Processing Unit (GPU) Optional

Software Requirements

- "Frontend" computer needs to be running Redhat-Enterprise Linux 7 (RHEL7)
 - Examples: Scientific Linux 7 (SL7), CentOS 7

• Midas

- Various other open source software libraries (root, boost, cactus, etc.)
- Some custom software libraries (DAQ frontend code, unpacking libraries, etc.)
- Software installation completely handled by <u>installer</u> on RHEL7 systems

```
[1] git clone
git@github.com:PIONEER-Experi
ment/gm2dag-installer
[2] ./install.sh
                                  patience...
 [3] source
./setup environment.sh
[4] ./start midas webpage.sh
                                   Open browser,
                                   localhost:8080
                   Stop Pau
         rogran
                      Equipment
                                       Events Events[/s] Data[MB/s
                                       25.373M
         ChanMap
                                       25.373M
                                                0.003
         Straw Tracker Settin
                      AMC1300
                                                 0.038
         WEDS
                      AMC1301
                                       4.026M
                                                 0.000
         CollimatorContro
                       AMC1302
                                       4 026M
                                                 0 000
         AMC1303
                                       4.026M
                                                 0.000
                      AMC1304
                                       4.026M
                                                 0.000
                      AMC1305
                                       4 026M
                                                 0.000
                      AMC1306
                                       4.026M
         MC13ThreadMonito
```

AMC1307

MC1308

4.026M

0.000

Installation, in a perfect world:

Data Output

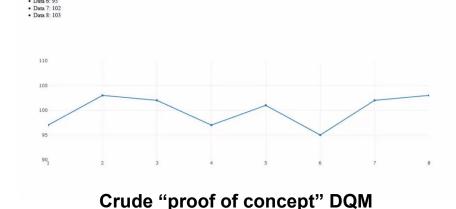
- Data is output "raw" in midas "CR" data banks
 - Written to run{#}.mid.lz4 files by mlogger
- Unpacked C++ data structure using <u>unpacking library</u>
 - Custom analyzers can import unpacking library
 - Unpacking library include in installer

	03 02 01 00 39 30	57 30 33 34 33 32 31	50 49 40 47 40	45 44 45 42 41 40 59 56 57 56 55 54 55	32 31 30 29 20 21 4	20 20 24	23 22 21 20 1	19 10 1/ 10	15 14 15	12 11 10 9	0 1 0 5 4 3 2 1 0	
AMC13 Header	0 0 0 0 AM	MC # Trigger # [23:0]		Times	Timestamp [43:32]		Data Length [19:0]					
AMC13 Header	CE [4:0] L	XADC E T	DC E TT [4:0] Timestam			mp [31:0]			BT	Α	Board ID [11:0]	
WFD5 Header	000000	0 0 0 0 0 0	00000	000000000000000	0000000	0 0 0	Major Revi	ision [7:0]	Minor	Revision [7:0]	Patch Revision [7:0]	
Channel Header	0 1 XADC	Channel Ta	g [11:0]	Waveform Gap	[21:0]		Wave	form Count [[11:0]	DDR	3 Start Address [25:14]	
Channel Header	DDR3 Sta	rt Address [13:0]		Waveform Length [22:0]		Π			Trigger	Number [23:0	J]	
Waveform Header	Waveform (Count [11:0]		DDR3 Start Address [25:0]		TT			Wavefo	orm Length [2	2:0]	
Waveform Header	0 1 0 0 0 0	0 0 0 0 0 0 0	00000	Channel Tag [11:0]		Wavefo	rm Gap [21:0]]		W	aveform Index [11:0]	
WFD5 Data				Wavefo	orm 1 ADC Data							
1		Ja	ack Carlto	on - University of Ker	ntucky - j.c	arlto	n@uky	.edu			5/9	

40 44 40 00 00 07 00 05 04 00 04 00 00 07 00 05 04 00 00 04

Midas Demo

Online Database (ODB) [Demo backup]


- GUI on midas webpage
 - Also available command line
- Allows for "on the fly" adjustments between runs
- Built in configurations:
 - Midas webpage
 - Logger write location
 - Webpage update rate
 - etc.

Online Database Brov	vser			
Find Create Link Delete Create E	log from this page			
Equipment / AMC1300 / Settings	s / Globals /			
Key	Value -			
Sync	n			
Use AMC13 Simulator	n			
GPU Device ID	0 (0x0)			
GPU Device Name Prefix	tesla			
Send to Event Builder	У			
FE Lossless Compression	y .			
FEBankByBankLosslessCompression	n			
Raw Data Store	Υ			
Raw Data Prescale	1000 (0x3E8)			
Raw Data Prescale Offset	1 (0x1)			
MCH IP Address	192.168.0.15			
CCC: FC7 Slot Number (1-12)	10 (0xA)			
CCC: FMC Location (top, bottom)	top			
CCC: FMC SFP Number (1-8)	1 (0x1)			

Custom Software [Demo backup]

- Can write "clients" that connect to midas experiment
 - Python
 - C++

- Allows for user to write software to fit there needs, for example:
 - Data Quality Monitor
 - Offline Analysis
 - Automatic ODB management

Jack Carlton - University of Kentucky - j.carlton@uky.edu

Oscilloscope Plot

Data • Data 1: 97 • Data 2: 103

Data 3- 100

Data 5-10

Future Projects (Things We're Working On)

• Ensuring UW machine has running DAQ before PSI beamtime

• Improve DQM framework to be more adaptable using midas, unpacking, and ZeroMQ libraries

- Direct communication between WFDs/FPGAs and CPU/GPU using PCIe communication
 - \circ $\;$ Avoids the need for μTCA crates
 - Speeds up data transfer rate (PCIe3x8 = 8GB/s = 64 Gb/s > 10 Gb/s)
 - Possibility for direct communication to GPU (faster data processing)