Some thoughts about triggers for PIONEER

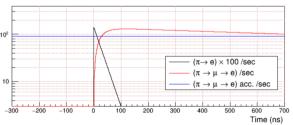
Dinko Počanić

University of Virginia

17 October 2023

PIONEER Collaboration Meeting CENPA, University of Washington Seattle, Washington 16–18 October 2023

Purpose of this presentation

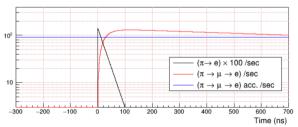

- ▶ Stimulate a discussion of general principles for PIONEER triggers,
- Look back on experience from previous experiments,
- Make sure decisions made in the near future do not limit final choices.

Note: put together on very short notice, with little available time.

Excellent starting point: the PIONEER proposal

6. Trigger and Data Acquisition System

All triggers will start with a PI signal, which is a loose condition for an incident beam particle defined as a coincidence of the beam detectors upstream of the ATAR. The key point is that this trigger must not introduce any bias between $\pi \to e\nu$ and $\pi \to \mu \to e$ events. The main time distributions in the vicinity of the PI signal are sketched in Fig. [10] After an initial build-up with the pion lifetime, positron rates from $\pi \to \mu \to e$ reach their maximum before decreasing with the muon lifetime. The constant accidental rate from muon decays of other pions stopped in ATAR is high.

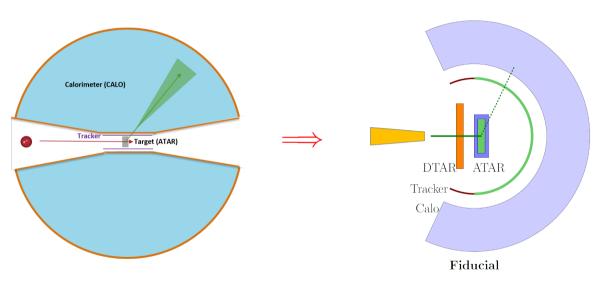


Excellent starting point: the PIONEER proposal

6. Trigger and Data Acquisition System

All triggers will start with a PI signal, which is a loose condition for an incident beam particle defined as a coincidence of the beam detectors upstream of the ATAR. The key point is that this trigger must not introduce any bias between $\pi \to e\nu$ and $\pi \to \mu \to e$ events. The main time distributions in the vicinity of the PI signal are sketched in Fig. [10] After an initial build-up with the pion lifetime, positron rates from $\pi \to \mu \to e$ reach their maximum before decreasing with the muon lifetime. The constant accidental rate from muon decays of other pions stopped in ATAR is high.

we also need non-pion-stop based triggers!


Key principles governing triggers

- \blacktriangleright minimum/no bias between $\pi \to e\nu$ and $\pi \to \mu\nu$ channels in MAIN trigger(s);
- generous inclusion of pre-PiStop times (accidental background);
- minimum bias for including radiative decays in the main triggers;
- dedicated triggers for radiative decays with detected photons: $\pi \to e\nu\gamma$, $\mu \to e\nu\bar{\nu}\gamma$;
- dedicated prescaled triggers timed with arrival of beam muons and beam electrons in ATAR;
- ightharpoonup a dedicated trigger for $\pi o e
 u$ TAIL events;
- a prescaled RANDOM trigger;
- ightharpoonup a prescaled COSMIC μ trigger.

To accomplish these goals must have FAST, well TIMED digital processing in real time.

[In 1998-99 we did this with fast analog electronics, sub-ns timing & programmable FPGA.]

A look at the PIONEER geometry

