Preliminary results of CENPA beam test

Svende Braun

PIONEER Collaboration Meeting 2023, Seattle

October 16th

1

LGAD technology

- Silicon detector with thin (<5um) and highly doped (~10^16 P) gain layer
 - High electric field -> high enough for electron multiplication, not for holes
 - Intrinsic low to moderate internal gain (10-50): gain=Q(LGAD)/ Q(PIN)
 - Controlled tunable gain with applied bias voltage
- Great hit time resolution: <20ps
- Gain saturation: gain suppression observed with large energy deposits
- Several producers (typical thickness: 50 um):
 - HPK (Japan), FBK (Italy), BNL (USA), CNM (Spain), NDL (China)

Gain saturation

- LGAD gain suppression observed experimentally with large energy deposits
- Large density of carriers: gain electrons/holes -> effectively screen external field=field shielding effect -> reduce field
 - local effect in time and space
- Tested by many groups with ion beams, lasers, alpha sources, etc...
- Bad for PIONEER to distinguish positrons from muons -> try to minimize effect
- Explore and characterize gain suppression using TCAD simulations (UCSC):
 - Significant gain loss for high gain detector & high deposition
 - Lower gain sensor -> less gain reduction -> adjust sensor design to reduce it

Goal of test beam:

- Study gain suppression effect with CENPA tandem accelerator
- Inject large amount of charge (several MIPS) with low energy proton beam
- Test energy resolution with large depositions: so far tested only up to ~70keV (SSRL test beam)
- Different devices:
 - See larger effect of higher gain & at same gain level structure influences suppression?
 - Similar gain suppression is less?

CENPA test beam

CENPA tandem van de Graaff accelerator

- accelerator
- High electric potential at center of machine from van de graaff generator
- by repulsive force
- Two accelerations of particles
- Use hydrogen as source for proton beam

https://www.npl.washington.edu/cenpa/history#storm

Negatively charged ions injected from source accelerated by attractive force into tandem

Stripper foil inside accelerator strips off electrons -> positively charged and accelerated away

Rutherford Backscattering SpectrometryBS

- Proton beam hits gold foil target, scattering of beam into detector -> to avoid direct beam on target
- Kinematic factor k:

$$k = \frac{E_1}{E_o} = \left[\frac{\left(M_2^2 - M_1^2 \sin^2 \theta\right)^{1/2} + M_1 \cos \theta}{M_2 + M_1}\right]^2$$

Scattering cross section:

Target: gold foil

Experimental setup

BIAS

Proton BEAM

CB #1

Mounted on rotation device: Stepper motor to change Detector angle wrt scattered beam

LGAD detector

Target gold foil

Experimental Setup

- Scattering angle of 110°
- Proton beam energies: 1.8, 2, 3, 5 MeV
 - Energy deposit in silicon vs. proton energy:
- Vary bias voltage across sensors to test different gain:
 - HPK 3.1: 80, 100, 130, 150,180V
 - HPK 3.2: 80,100V
 - PIN: 30V & 200V
- Vary LGAD angle wrt. Scattered beam: 0°-75°

-> Test stopping & passing through of protons

E.
1
-
-
-
-
:
1
20
20

1
-
1
1
1
-
-
-
-
-
-
 _
1
L
20
20

Tested boards

- 2 single pad 1.3x1.3mm² LGADs: Hamamatsu Photonics sensors (50um thick)
 - HPK 3.1:
 - Shallow gain layer: 0.5-1um
 - HPK 3.2:
 - deeper gain layer: 1-2um
- 1 PIN: no gain layer
 - Same geometry Cathode

P+

HPK 3.1

HPK 3.2

Preliminary Results: >2 weeks of data talking in July/August

-> 350 runs, way too much to show for 15min

- Energy deposit constant vs. angle at 1.8 & 2 MeV -> Proton stops & deposits max. amount in sensor
- 3MeV: proton punches though -> PIN response increases linear with angle $\sqrt{2}$ until it stops at ~50°

HPK 3.1 data, 3 MeV

Decrease of gain at largest angles not fully understood

• Hypotheses: deposit at different depth of device

-> less lateral drift closer to gain layer -> larger gain suppression

- Gain suppressed at low angle: large charge deposit
- Factor >2: as angle increases smaller gain suppression -> charge spread out over larger area

HPK 3.1 data, 3 MeV

- At higher bias voltage higher initial gain
 - larger gain increase=larger spread
 - Larger effect in total

HPK 3.1 data vs HPK 3.2, 3 MeV

• HPK 3.2: larger gain increase=larger spread, but less gain suppression at high angles and less suppression at low angles?

Pulse shape analysis - Introduction

- Analysis of average pulses to
 - 1. Assess quality of data: select regions where pulses are stable-> compute average and standard deviation
 - 2. Look for features of gain layer
 - 3. Input for TCAD simulation
 - 4. Determine gain vs. angle and gain vs bias voltage for selected regions

Example pulse analysis for 1.8 MeV

Example PIN pulse analysis: 1.8MeV, 200V

Example PIN pulse analysis: 1.8MeV, 200V

Example HPK 3.1 pulse analysis: 1.8MeV, 100V

Example HPK 3.1 pulse analysis: 1.8MeV, 100V

Example HPK 3.2 pulse analysis: 1.8MeV, 80V

Example HPK 3.2 pulse analysis: 1.8MeV, 80V

-> larger amplitude and much slower signal as HPK 3.1

Gain @1.8MeV - HPK 3.2 vs 3.1

Gain @1.8MeV& 2 MeV

Gain @3MeV - HPK 3.2 vs 3.1

Conclusion/Outlook

- We tested LGAD and PIN devices for PIONEER at a test beam at the CENPA tandem accelerator
 - Used different beam energies, varying detector angles and different bias voltages
- Observed gain suppression and full stopping of protons

 - Goal: reduce gain suppression for PIONEER
- Have done gain analysis vs. angle and pulse analysis for all energies
 - Energy resolution study in progress: Chris from UCSC
 - Energy spectra still to be better understood by comparing to Eric's PIPS data
 - Many more puzzles to be understood!
- Planning future test beam with 120 & 200um thick BNL sensors as well as AC-LGADs

Thanks a lot to everyone involved! Stay tuned for updates!

Need to quantify effect and understand it better from analysis comparisons with TCAD/Geant4 simulation

Big THANK YOU to the whole CENPA team:

- Eric & Brittney with help from Anthony, Alex & Arif -> providing us with beam
- Ryan and Nate -> building & designing our detector holder, 3D-printing pieces, machining parts ...
- David Peterson -> setting up and testing the motor as rotation device, ...
- Gary -> helping with network support
- Peter & Quentin -> making it happen
- Simone (UCSC) -> LGAD expert
- Caleb -> REU student
- Adam-> processing data

Outlook

- Can we verify results using TCAD simulations?
 - Effort started from Yuzhan (UCSC): <u>https://pioneer.npl.washington.edu/</u> <u>docdb/0002/000204/001/CENPA_TCAD.pdf</u>
 - Use GEANT4 to simulate energy deposit as input for TCAD, same procedure as for alpha & beta-source test stands at UCSC
 - Then 2D simulations for sensor -> 3D simulation needed for more accurate results, but needs very long computing time
 - -> to be continued, stay tuned

Backup slides

LGAD CENPA testbeam pictures

Testing 4 different LGADs:

Puzzles:

- PIN stops @1.8 MeV & 2MeV at all angles
- PIN stops @3MeV from angle 54° onwards
 - Energy deposit not the same:
- LGAD expected to also stop -> compare gain at different energies:
 - Why is the gain different when is stops in each case?

Comparison of **HPK 3.2 gain** @100V bias voltage:

HPK 3.2 Angle/	1.8 MeV	3 MeV
0 °	4.3	6.7
54°	5.81	8.7
63°	5.84	8.45

Comparison of **PIN peak position (=energy deposit)** @30V bias voltage:

1.8 MeV	2 MeV	3 MeV (54
3.89373E-22	4.22998E-22	6.0648E-22

Comparison of **HPK 3.1 gain** @100V bias voltage:

HPK 3.1 Angle/Energy	1.8 MeV	2 MeV	3 Me
0 °	2.8	1.8	3.6
54°	3.6	2.54	5.7
63°	3.35	2.51	5.5

Punch through

Puzzles: collected charge vs. energy

Linearity expected for proton stopping

Puzzles:			HPK 3.1 Peak pos./Energ	
 Energy deposit not the same for LGAD either: 				Jo
			5	4°
Comparison of HPK 3.2 p	eak @100V bias volt	age:	6	3°
HPK 3.1 Peak pos./Energy	1.8 MeV		3 MeV	
0 °	1.6785E-21	1.64016	5E-21	

2.52744E-21

2.47386E-21

5.28046E-21

5.12098E-21

54°

63°

Comparison of **HPK 3.1 peak** @100V bias voltage:

	•	-	C
rgy	1.8 MeV	2 MeV	3 MeV
	1.10772E-21	7.47839E-22	8.78195E-22
	1.39733E-21	1.05702E-21	Punch through 3.44749E-21
	1.2881E-21	1.04647E-21	3.32169E-21

ATAR

- Full silicon active target based on low-gain avalanche diode (LGAD) technology
- Requirements:
 - High longitudinal segmentation: to detect stopping pion and emitted muon
 - Compact: reduce dead material (incl. air) as much as possible
 - Fast timing: separate pulses to reconstruct pion decay chain
 - Large dynamic range: detect energy deposit from positrons (MiP) & slow pions/muons (non-MiP)

TCAD simulations

- Simulation shows large gain suppression effect with high input charge density
- Gain suppression reduced if input charges are spread even -> less localized
- Gain of LGAD produced by impact ionization in high field region of gain layer
 - Very sensitive to electric field magnitude
 - Study time evolution of electric field within gain layer:
 - Local effect (5um) & recovery time: electric field returns to normal in few hundred ps

-> improve recovery time by draining away charges faster -> can be achieved with increasing conductivity of gain layer ->larger N++ doping

Track of charges

SSRL test beam

- Study low energy deposits with X-rays with the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC
- 5-70keV X-rays in air at room temperature
- Simulation:
 - Geant4 for interaction rate with devices
 - TCAD Centaurus for charge collection mechanism of X-ray interaction in sensor
- Measured energy resolution at 20 & 35keV to be ~10% for low gain: 5-15
 - Depends on bias voltage: higher V -> worse resolution
 - The best energy resolution (6%) with LGADs operated at low voltage with gain of ~10
- Also studied linearity of energy response (<4%) & timing resolution
 - Best timing for maximum voltage -> slower drift time

Pre-amp saturates after 100V & 3 MeV: pmax distributions

