Hardware progress from BNL

Vladimir Tishchenko

PIONEER collaboration meeting October 16-18, 2023, Seattle, WA

Contents

- Small sensor prototype development and production for ATAR
- Frontend electronics development prospects
- Characterization of VMM chip Siddhant Mehrotra

Small sensor prototype fabrication

- 2yrs LDRD awarded in 2022, second year started October 1st, 2023
- Wafers ordering July 2022
- Dicing and characterization started September 2023
- Goal: produce small prototypes of 120-um-thick LGAD sensors for PIONEER. Prove their handling with standard clean-room tools at BNL. Take characterization measurements with the sensors.

Back: p+ DC-coupled strips 4 lithographies and 1 implant: p+ implant, contacts, passivation opening

n-side: 6 lithographies and 3implants: deep n+ implant (or Junction Termination Edge, JTE), resistive implant (AC-LGAD devices), gain layer (AC-LGAD devices), contacts, metal and passivation opening.

Resistive layer dose: 1, 1.5, 2 x 10^{13} cm⁻² on different wafers

Layout of the wafers

Gabriele Giacomini

5x3" wafer: 120um thick (one-sided device); update: damaged 2 wafers during mfg. 3x4" wafer: 200um thick

Using same mask set for 3" and 4" wafers to minimize the total cost.

	DC strips						AC-LGAD						
/	multiplicity in 4" wafer	multiplicity in 3" wafer		Width (um)	Pitch (um)	-	multiplicity in 4" wafer	multiplicity in 3" wafer		Width (um)	Pitch (um)		
						_							
	20x	9x	2mmx2mm	single channel		.	20x 9x		2mmx2mm	single channel			
						.							
	8x	4x	1cm x 1mm	100	200	_	4x	2x	1cm x 1mm	80	200		
	8x	4x	1cm x 1mm	50	200		8x	4x	1cm x 1mm	100	200		
							4x	2x	1cm x 1mm	150	200		
I						- 1							
Ì	2x	2x	2cm x 2mm	50	200		1x	1x	2cm x 1mm	80	200		
	Зх	Зх	2cm x 2mm	100	200		3х	Зx	2cm x 1mm	100	200		
							1x	1x	2cm x 1mm	150	200		
L													
	2x	1x	1cm x 0.5cm	200	500		1x	0	1cm x 0.5cm	200	500		
							1x	1x	1cm x 0.5cm	100	500		
	2x	0	0.5cm x 0.5cm	100	500		2x	0	0.5cm x 0.5cm	100	500		
	2x	1x	0.5cm x 0.5cm	200	500		2x	1x	0.5cm x 0.5cm	200	500		
	1x	0	0.5cm x 0.5cm	300	500		1x	1x	0.5cm x 0.5cm	300	500		
	1x	1x	0.5cm x 0.5cm	100	200		1x	0	0.5cm x 0.5cm	400	500		
			1	1				1	1		1		

200 um sensors – dicing one 4" wafer

200 um sensors – basic checkup setup

200 um sensors characterization – in progress

Single channel devices from one 200um-thick wafer, not passivated.

sensor V-I characterization

- Basic characterization of produced sensors started.
- Provided several sensors to UCSC for
 independent characterization. More
 sensors requested, will be provided soon.
- The analysis of the observed features is in progress.
- Sensors from other wafers will be tested soon.

Development of frontend ASICs at BNL

Prashansa Mukim, LIDINE 2023

All three ASICS (FE+ADC+serializer) share same FrontEnd MotherBoard PCB.

Design currently being translated to 65 nm CMOS. Opportunity for PIONEER for frontend chip design Customization for shorter shaping times (~20 ns, Cd.~20 pF).

LArASIC 180 \rightarrow 65 nm translation status

Prashansa Mukim, LIDINE 2023

- Charge amplifiers use current-mirror based adaptive continuous reset
- A1 and A2 are 3-stage amplifiers (> 100 dB gain)
- Input stage transistor for A1 implemented using thick oxide (2.5V) devices in 65 nm to limit leakage current and associated shot noise. Input stage transistor sized to have Cg~40 pF, optimal choice for minimizing noise with Cd~150 pF with given power budget.
- Pole zero cancellation ensures fast current pulse and prevents baseline drift.
- Implemented shaper is 5th order semi-gaussian filter with complex conjugate poles.
- (Nearly) equal rise and fall times maximize the output signal and amplitude for a given pulse duration

2.0

time (us)

LArASIC 180 \rightarrow 65 nm translation status

Prashansa Mukim, LIDINE 2023

Technology	180 nm CMOS – 1-poly	65 nm CMOS: 1-poly, 9-metal			
Supply Voltage	1.8 V	✓			
Temperature Range	77 – 300 K (-196 – 27 °	✓			
Number of Channels	16	 			
Max Single-Ended Output Swing	1.4 V peak to peak (0.2	~			
Gain Selection (mV/fC)	4.7	7.8		25	~
Full-Scale Input Charge (fC)	300	180	100	56	j j
Baseline selection	200 mV (collection mod	e)	900 mV	(induction mode)	
Charge Preamplifier Polarity	Negative (collection mo	de)	Bipolar (i	nduction mode)	
Adaptive-Reset Current Selection (nA)	0.1	0.5	1	5	×
Shaper Peaking Time Selection (µs)	0.5	1		3	✓
Output Coupling	AC (100 µs HPF time-c	onstant)	DC		✓
Output Selection	Shaper		buffer	SEDC buffer	
Total Channel Settings	1024				
Integrated Test Capacitor	200 fF				
Temperature Sensor	0.8728 V @ 25°C + 2.8				
Integrated Pulse Generator	6-bit DAC based				
Configuration Control	SPI interface with 144 m	I ² C interface			

VMM3a – Why?

- Prototype ATAR readout for PIN
- Low noise
 - DDF architecture -> low C_{in}
- Fast shaping time (25 ns)
 - Cannot separate peaks within 5 ns but enough for first try
 - T₀ timing resolution of 0.4 ns can be achieved
- Immediate shortcomings
 - 10-bit ADC w/7.5 ENOB
 - Limt dynamic range
- Measurement capabilities
 - Even with ENOB can reach 20 MIP
 - Higher if require less S/N

De Geronimo. (2022). The vmm3a asic. IEEE Transactions on Nuclear Science, 69(4), 976-985.

VMM3a –ATLAS ASIC

- 64 front end channels
- 3 stage low noise charge amp
 - Programmable input polarity
 - Test capacitor
- 3rd order shaper
 - Delayed Dissipative Feedback

Adjustable Peaking Time

Adjustable Gain (mV/fC)

25, 50, 100, 200 ns

0.5, 1, 3, 4.5, 6, 9, 12, 16

Signal (mV)

-1000

1000

0

2000

Time (ns)

3000

4000

-500

-250

250

0

500

Time (ns)

750

1000

1250

1500

- Mixed Signal Output
 - Discrimination
 - 20 mV hysteresis
 - PDO, TDO

Characterization – Linearity

- Measured output of pulser DAC directly
- Fitted output against configured DAC input
 - 0.75 mV/DAC step
 - Use to test gain accuracy
- Expected Dynamic Range ~180
 ENOB: ~7.5 -> 2^{7.5}
- Measured Dynamic Range ~205 (46 dB)

Characterization – Gain Accuracy

- Compared direct DAC output with shaped waveforms to test listed gain accuracy
- Adjustable C_{in} (300, 3000 fF)

Characterization – Noise

- ENC Measurement via noise signal RMS
- Interested in relationship with Gain at different Peaking Times

 $ENC = \frac{V_{rms}}{Gain}$

Characterization – Noise

- Disagreement with expected performance -> lowest noise observed ~750 electrons (gain 16)
- Attributed to:
 - Additional capacitances in this board vs ideal chip setup
 - Power/Grounding noise sources (George)

Key Takeaways

- Currently unable to demonstrate all listed performance levels
 - Need to understand ENC issue better
- Process provides framework for future electronics characterization
- Standardize the characterization of all (current and future) proposed electronics for ATAR
 - ENC relationship with configurable settings (Gain, Peaking Time)
 - Dynamic Range, Linearity, etc.
 - Accuracy of configurable settings

Characterization – Dynamic Range

- Compared known input with measured output of ADC
- Maximum measurable signal ~977 mV

- Expected Dynamic Range ~180
 - ENOB: ~7.5 -> 2^{7.5}
- Measured Dynamic Range ~205 (46 dB)

PDO & TDO

- PDO Peak Detector Output
- TDO Timing Detector Output
 - Time to Amplitude Converter (TAC)
 - Voltage ramp at threshold or peak and stops at cycle of Bunch Crossing Clock (CKBC)

Characterization – Pulse Shaping

- Mild vs Strong Bipolar shape
- Configurable via global bits

Noise Cleaning

- Noise waveform measurements via Wavepro 7000 scope
 - Sampling frequency: 5 GHz
 - 5000 ns measurement
- Noise waveforms obtained by moving scope selection to time stamps far after test pulser signal
 - Baseline removed for each signal (~160 mV)
 - Low pass filter applied (cutoff freq: 5e⁶ Hz)
- Concatenated numerous noise signals

Calculating RMS voltage and ENC

- To calculate ENC we computed RMS of noise first and divided by gain (mV/fC)
- For RMS of voltage we used 2 methods ٠
 - Initially just using normal RMS formula but ٠ large spikes (most likely external noise sources) skewed the result
 - Second method allows for removal of outlier • voltages

 V_{rms}

Method 1: RMS formula

Concatenate squared amplitude of signals and take square root of mean

Method 2: Use 50+/-32% of voltage distribution

a – 18 %

b – 50 %

c – 82%

Gain 3.0 mV/fC, Peak Time: 25.0 ns