LXe calorimeter prototype(s) for PIONEER Status update & future plans

- LXe calorimetry
- R&D setup : LoLX
- Status of preparations for a large prototype
 - simulations (NEST, optimal simulations)
 - mechanical work
 - remaining work
 - timeline
- Physics (Doug's presentation)

PIONEER Collaboration meeting — Seattle —

- high density ~3g/cm3
- high light yield (~NaI)
- fast response
- transparent to its emission (long absorption length)
- highly homogeneous response
- emission in the VUV (~175 nm)
- purities can be removed
- detector can be "reshaped" (LXe is a commodity)
- "expensive" (currently quotes from China are OK -> see procurement talk)
 - \checkmark high energy resolution
 - ✓ fast timing
 - ✓ homogeneous response

Material PropertiesAtomic NumberAtomic Weight ABoiling point T_b Melting point T_m	Value & Unit 54 131.29 g/mole 165.1 K 161.4 K 2.98 g/cm ³ 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	Conditions 1 atm 1 atm 161.35 K 15 °C, 1 bar
Atomic Number Atomic Weight A Boiling point T_b Melting point T_m	54 131.29 g/mole 165.1 K 161.4 K 2.98 g/cm ³ 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	1 atm 1 atm <mark>161.35 K</mark> 15 °C, 1 bar
Atomic Weight A Boiling point T_b Melting point T_m	131.29 g/mole 165.1 K 161.4 K 2.98 g/cm ³ 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	1 atm 1 atm <mark>161.35 K</mark> 15 °C, 1 bar
Boiling point T_b Melting point T_m	165.1 K 161.4 K 2.98 g/cm^3 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	1 atm 1 atm <mark>161.35 K</mark> 15 °C, 1 bar
Melting point T_m	161.4 K 2.98 g/cm ³ 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	1 atm 161.35 K 15 °C, 1 bar
	<mark>2.98 g/cm³</mark> 550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	<mark>161.35 K</mark> 15 °C, 1 bar
Density ρ_{liq}	550 289.7 K, 58.4 bar 161.3 K, 0.816 bar	15 °C, 1 bar
Volume ratio $ ho_{ m gas}/ ho_{ m liq}$	289.7 K, 58.4 bar 161.3 K, 0.816 bar	
Critical point T_c , P_c	161.3 K, 0.816 bas	-
Triple point T_3, P_3		ſ
Radiation length X_0	$2.77~\mathrm{cm}$	in liquid
	$8.48 \mathrm{~g/cm^2}$	
Molière radius R_M	$5.6~{ m cm}$	
Critical Energy	$10.4 \mathrm{MeV}$	
$-(\mathrm{d}E/\mathrm{d}x)_{\mathrm{mip}}$	$1.255~{ m MeV~cm^2/g}$	
Refractive index	$1.6 \div 1.72$	in liquid at 178 nm
Fano Factor	0.041	theoretical
	unknown	experimental
Energy/scint. photon W_{I}	$_{\rm ph}~~(23.7\pm2.4)~{\rm eV}$	electrons
	$(19.6\pm2.0)~{ m eV}$	$lpha ext{-particles}$
Lifetime singlet τ_s	$22 \mathrm{ns}$	
Lifetime triplet $ au_t$	$4.2 \mathrm{~ns}$	
Recombination time τ_r	45 ns	dominant for e, γ
Peak emission wavelengt	h $\lambda_{ m scint}$ 178 nm	
Spectral width (FWHM)	$\sim 14~\mathrm{nm}$	
Scint. Absorption length	$\lambda_{ m abs}$ > 100 cm	
Rayleigh scattering lengt	$h \lambda_{ m R} \qquad (29\pm2) { m cm}$	
Thermal neutron $\sigma_{ m tot}$	(23.9 ± 1.2) barn	Natural compositio

^aDiscrepancies are present among the measured values. Refractive index in [7] was determined at 180

from https://arxiv.org/pdf/physics/0401072.pdf

PIONEER Collaboration meeting — Seattle —

	Liquid density (g/cc)	Boiling point at 1 bar (K)	Electron mobility (cm ² /Vs)	Scintillation wavelength (nm)	Scintillation yield (photons/MeV)	Long-lived radioactive isotopes	Triplet molecule lifetime (µs)
LHe	0.145	4.2	low	80	19,000	none	13,000,000
LNe	1.2	27.1	low	78	30,000	none	15
LAr	1.4	87.3	400	125	40,000	³⁹ Ar, ⁴² Ar	1.6
LKr	2.4	120	1200	150	25,000	⁸¹ Kr, ⁸⁵ Kr	0.09
LXe	3.0	165	2200	175	42,000	¹³⁶ Xe	0.03

C. Malbrunot - TRIUMF

17th October 2022

PIONEER Collaboration meeting — Seattle —

- triple point at 161K, 0.82 bar
- narrow temperature range for liquid operation
- scintillation light mechanism

- Excitation/Ionization ratio depends on the incident particles

VUV light collection in LXe

- VUV sensitive SiPMs
- Cryogenic PMTs with fused silica windows
- Other options:
 - WLS (TPB others) deposited on PMT/SiPM
 - WLS coated on reflective detector wall
 - other (light guide etc)

FEATURES

•For low temperature operation down to -110 °C ●Large effective area: 48.5 mm × 48.5 mm •2 × 2 multianode, pixel size: 24.25 mm × 24.25 mm / anode •High UV sensitivity Low profile •Low radioactivity

APPLICATIONS

 Academic research (Dark matter detection) Nuclear medicine equipment (PET)

https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R12699-406-M4_TPMH1368E.pdf

Developed for PandaX : fast, QE=33% \$k8/tube!

VuV SiPM : HPK / FBK

HPK VUV4-Q-50 Quad device 50um pitch

FLAT PANEL TYPE MULTIANODE PHOTOMULTIPLIER TUBE R12699-406-M4

FEATURES

•For low temperature operation down to -110 °C: R8520-406 down to -186 °C: R8520-506

Low radioactivity 26 mm (1 Inch) square High UV sensitivity by synthetic silica window

APPLICATIONS

- High energy physics
- Astrophysics
- Academic research

PHOTOMULTIPLIER TUBE R8520-406/R8520-506

https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R8520-406_TPMH1342E.pdf

1 inch, fast, QE=30%

FBK VUVHD3

BEING **CONCOMITANTLY TESTED in LOLX**

Xenon purification needed

- Xenon purchased is graded for 10 ppm impurities
- Impurities (water, 02 etc) dissolve in the liquid and absorb UV photons -> drastic effect

- presence of photosensors precludes high temperature baking (alternative: slow and long baking)
- Gaseous purification (metal getter purifier) slow ~4L/h (in MEG)
- Liquid purification (molecular sieves) fast ~40L/h
- Purity measured by light attenuation OR separate purity monitor (see slide)

- LXe - open questions

• <u>Energy resolution</u>

Shinji's Ph.D thesis (Figure 9.15 https://meg.web.psi.ch/docs/theses/ogawa_phd.pdf).

In our proposal: "The baseline energy resolution goal for PIONEER at 70 MeV is 1.5%". Needs depends on physics goals. <u>Higher is Better</u>. But independently of the value, to trust our MC extracted sensitivity we need to understand the discrepancy

• **<u>Pile-up</u>**: Simulations needed to assess feasibility of 1st phase without segmentation i.e. relying on pulse shape separation (5-10ns) + knowledge of beam contamination needed

C. Malbrunot - TRIUMF

MEG results for impinging γ in the LXe large prototype

• Energy resolution

Resolution does not seem limited by intrinsic light yield

Can the fluctuations of dE/dx within the EM "shower" cause changes in light output and worsening the energy resolution

-> NEST

Also includes fluctuations in the recombination

==> Compare MEG data with MC with/wo NEST

NEST studies based on MEG calorimeter geometry
 Conclusion: Resolution discrepancy (after equalizing the light 1 yields). But resolution is highly dependent on E-field

NEST has potential for tuning and matching simulation results to data, but reliable data is required for this effort to be successful.

Work by Aleksey

- SMALL SETUP : LoLX @ McGill
- few liters (~2L)
- offers flexibility of operation
- simple geometry
- 1. test and characterize photosensor technologies (PDE, response) after high irradiation, stability etc)
- 2. benchmark simulations (G4 with and w/o NEST and optical simulations (Chroma))
- 3. LXe scintillation properties (IR emission, Cerenkov)
- 4. measure energy resolution at low energies (compare to simulations)
- 5. data input to NEST at zero-field
- 6. material test (reflectivity, different coatings, WLS) etc

LoLX setup at McGill

- SMALL SETUP : LOLX @ McGill

LoLX detector built at TRIUMF 40 FBK VUV HD3 40 Hamamatsu VUV4 1 PMT R8520-406

All press-fit and crimp connectors, Kapton insulated coax cables, hydrocarbon ceramic PCB shipped to McGill, assembled and **inserted in the cryostat in March** Work by Khurshid, Colin, Stéphanie, Austin, Peter, Alex, Nicolas and others

C. Malbrunot - TRIUMF

17th October 2022

First run (2 days) with LXe mid August

- delayed by issues on compressor
- Successful run analysis ongoing
- Several external gamma sources used (Ba133, Na22, Cs137)
- PicoQuant pulsed diode laser for calibration
- Likely problem of purity (presence of N2)

improvements

- add internal source
- addition of UPS system and other operation-safety hardware
- addition of a gantry system for easier manipulation
- add optical filters
- recirculation pump for continuous purification
- some DAQ and electronics improvements

C. Malbrunot - TRIUMF

17th October 2022

Purity monitor for LoLX and large prototype

Motivation

- Impurities in LXe absorb VUV light and can degrade energy resolution
- electronegative impurities affect e- lifetime during drift in LXe
- e-lifetime is a sensitive measurement of impurities contamination in LXe

Work by Claire, Bob, Leonid, Irena, Nicolas and others

Theory $Q_{anode} = Q_{cathode} e^{-t/\tau}$

Relate τ to rate attachment constants (k) and concentration of impurities (n): $\tau =$ $\sum_{i} k_{i} n_{i}$ Xe Flashlamp (or UV laser) Electrons generated at cathode drift down to Photocathode anode *Upper grid **Basic Design Information:** Field-shaping 5cm drift length rings 1cm electrode *Lower grid 400V/mm drift field Anode ~50us electron lifetime

Simulations:

- COMSOL to optimize ring spacing to find most homogenous electric field in drift region
- Import COMSOL geometry into Garfield++ to measure grid transparency
- Grid transparency: ratio of the number of electrons at the anode to the number of electrons generated in cathode

•Measure electron lifetime (τ). Impurities will attenuate charge (Q) over the time of drift (t):

*Grid may not be used in final design

Electric potential [V] of purity monitor in COMSOL

Test Box: Next Steps

• Determine how many electrons are produced by the flashlamp to decide whether to use grids in the purity monitor

PIONEER Collaboration meeting — Seattle —

Other LXe related R&D setup by other groups

Slide by Satoshi

- Cherenkov light spectroscopy by the Yokohama National Univ. group (SM is in the collaboration)
- Measurement is in preparation. 1st test in 2023.

S. Nakamura in JPS meeting Sep. 2023

PIONEER needs a technology choice for the calorimeter - Given open questions listed before cannot rely entirely on MC without data validation The MEG prototype is a good-sized prototype. Minimal additional design work - gas handling already existing Axial length of the cryostat is up to 28 X_0 = baseline radius for the PIONEER LXe "ball" is 25 X0 (slice of the full detector) Resolution and tail is limited by radius

<u>Objectives</u>

Benchmark/Validate simulations to allow us to scale to PIONEER full calorimeter

Using a high momentum resolution 70 MeV e⁺ beam et PSI:

- Measure energy resolution at our energies, with e+

- Measure detector lineshape including contribution of photonuclear reactions
- Study shower leakages (resolution versus angle)
- Test of entrance window
- Technological upgrades test (cabling, choice of material for PMT PCBs, purity monitor)
- Training of the collaboration on LXe handling
- R&D : effect of optical coating on energy resolution, optical segmentation, Cerenkov, test of new generation photosensors
- PHYSICS! (see Doug's slides at the end)

Simulations for prototype

- Energy deposit studies : limited by radius of cryostat but good performance with 100-120 L

Work by Colin, Kolja

- Optical studies to determine optimal photosensor and calibration sources placement, evaluate expected energy resolution Work by Emma

C. Malbrunot - TRIUMF

PMT fo

~142 VUV PMTs were sent from PSI to TRIUMF (Thanks to Arrived mid-September

1st generation R6041Q

228 in the LP (2003 CEX and TERAS) 111 In the LP (2011) 127 in the LP (2004 CEX)

Rb-Sc-Sb Mn layer to keep surface resistance at low temp.

1st compact version QE~4-6% Under high rate background, PMT output reduced by 10 -20% with a time constant of order of 10min. K–Sc–Sb

Al strip to fit with

to keep surface temp.

Higher QE ~12-1 Good performan Still slight reduct high BG

C. Malbrunot - TRIUMF

17th October 2022

r prototyp MEG)	De ostly those
<section-header></section-header>	3rd generation R9869
004 CEX)	Used in the final detector
h the dynode pattern resistance at low	K–Sc–Sb Al strip density is doubled. 4% loss of the effective area.
14% ace in high rate BG tion of output in very	Higher QE~12–14% Much better performance in very high BG

<u>Next steps</u>

- ✓ Inventory (different types, some PMTs) are potted)
- Test individual PMTs with flash lamp : about to start - test box prepared
- Design new base (use ceramic instead of G10), crimp wherever possible, connector directly on base
- Use kapton cables (~300 m of cables!)
- Get HV and signal feedthrough
- ✓ >140 HV channels (Lecroy power supply tested - working on the MIDAS frontend)
- cable routing
- work out connection to DAQ

Inner assembly design

17th October 2022

PIONEER Collaboration meeting — Seattle —

Entrance window R&D for prototype

Slide by Satoshi

- •Metal honeycomb panel used in MEG R&D •Steel
- •Recent KEK R&D for beam vacuum window
 - •Ti-6AL-4V 3d-printed window
 - 6wt% Al (X_0 =8.9cm) and 4wt% Vanadium $(X_0=2.6 \text{ cm})$ is added to Ti $(X_0=3.6 \text{ cm})$
 - •4.43 g/cm³
 - •0.2mm, grinded down from ~0.5mm, OK for 3 bar. Technically not feasible to grind down more.
 - •Al 3d-printed window is also possible, grinded down to 0.2mm
 - •[New!] Rupture disk Al 0.15mm is strong enough for 3 bar pressure difference!
 - •Need R&D to fix the window on the cover
 - •Indium sealing should work

0.5mm 64Ti window

PIONEER overall timeline (assuming approval stages and external funding decisions are positive and proceed expeditiously)

	2022	20	2023			2024			2025				2026			
	Q1 Q2 Q3 Q4	Q1 Q2	Q3	Q 4	Q1	Q2	Q3	Q 4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
							\wedge									
Approvals	PSI Experime	ental Ap	prov	/al											THI	S RE
	Snov	vmass p	rese	ntat	ion											
		🔶 F	⁹ 5 pi	rese	ntat	ion										
					• (CD0	npir	ninal	& (DR	dev	elop	mer	nt		
DOF									• (D1	/ CD	R co	omp	lete	d	
process																
															• (CD2/
Design Phase	Pic	n Beam	Test	t #1												
Beam Tests	R&D: ATAR, C	alo, Elec	tron	ics,	Trac	ker	Ш									
and					LYS	ΟΤε	est E	Bean	n at	PSI						
Construction								LXe	100) L P	roto	otyp	e Te	st B	eam	n at l
													ATA	AR p	ion	stop
	_															
	_															
	_															
			_													
Running																
	_		_													

C. Malbrunot - TRIUMF

	20	27			20	28			20	29		2030 2031				2032								
∩ 1	02	03	04	01	02	03	04	01	02	03	04	01	02	03	04	01	02	03	04	01	02	03	04	01
<u> </u>	QZ	QJ	4 7	Q1	QL	QJ	QT	QT	QZ	QJ	ЧT	QI	QZ	QJ	ų۲	Q1	QZ	QJ	<u> </u>	QT	QZ	QJ	<u> </u>	QT
		тс т																TECT						
	JLIN	131		гпа		FNC						FLA	vUn	UN		NJAL	.111	ILJI	5.					
							CI	-1																
PSI	Shu	tdo	wn /	′ Up _{	gade	5																		
3 no	omir	nal 8	& TD	R																				
												• (D4	nom	ninal									
SI																								
pin	g tes	st																						
Dev	velop	o LX	e In	frast	ure,	inc	ludi	ng p	ost	MEC	5													
AT/	4R +	Par	tial	Calo	sys	tem	s Te	st																
		Cal	o Cr	vo C	onst	truc	tion																	
								Inst	alla	tion														
										Rur	/ 1-ר	Cor	nmi	ssio	ning	, ,								
											/		Rur	1-2 F	ۍ ۲ اار	, Dhvs	ics F	Run						
													i (Gi				Rur	יים וי ו-א ד	ະບຸມ	Phvs	ics F	Run		
																	nur			1193	Rur			Dhvc
																					nui	1		1193

Timeline (agressive!) decision should be made on beamtime request (contingent on LXe procurement)

	YEAR					2023	3		
	months	4	5	6	7	8	9	10	
Simulation	G4 optical simulations								
DAQ installation and test	DAQ Implementation								
Mechanical support	Design Inner assembly								
	Fabrication of inner assembly								
Electronics	Design PCB								
	Production, Assembly, Cabling								
	Full assembly								
@ TRIUMF assembly and test	tests at TRIUMF with light source								
	Shipment and assembly at PSI								
	evacuation/ slow baking								
@ PSI	LXe filling/ purification								
	Detector test with cosmic and calibration sources								

C. Malbrunot - TRIUMF

earliest possible bear

		2024											
11	12	1	2	3	4	5	6	7	8	9	10	1	

mtime									
	12								

Proposal sent out 21st July 2023

TASKS & RESPONSIBILITIES - LXe PROTOTYPE

INSTALLATION AT PSI

PSI liaison Beamline setup Experimental platform at PSI

Anna ?Anna Anna/Peter

CRYOSTAT MECHANICS

Simulations New windows design Cryostat inner modifications Inner assembly structure construction

Chloé / Anna Satoshi (KEK) Toshiyuki / Anna? Chloé (TRIUMF)

READOUT

PMT shipment PMT & HV testing Electronics & cabling DAQ Beam instrumentation Trigger

LXe & CRYOGENICS

LXe procurement and transport LXe storage LXe gas handling & recovery system

Cryogenics and purification system Calibration (LED/alpha/cosmic-ray counter)

Purity monitor & light attenuation monitor

Toshiyuki Chloé (TRIUMF) Chloé (TRIUMF) Lawrence / Tim (Chloé) Jaydeep Lawrence/Jaydeep/Chloé

all (Xin, Aleksey, Satoshi, Doug, Chloé) Julien from Subatech/ others? Julien (SUBATECH)/ Toshiyuki/Anna coordination with PSI safety Toshiyuki/Satoshi? Sei/Toshiyuki/others (other calibrations) Chloé/Doug/Bob (TRIUMF)

At TRIUMF

- Finalize simulations
- Test of ~140 PMTs (purchase new ones?)
- Design and production of new PMT base
- Design and construction of inner mechanical structure holding the PMTs and light sources
- gain matching with light sources
- Cabling and connections to DAQ
- Test overall assembly with DAQ
- production and test of purity monitor
- shipment
- **——> 6-8 MONTHS**

At PSI/KEK

- Production of window + new flange
- Find/Procure storage vessel & N2 double wall cylinder (CERN?)
- Beam instrumentation
- Find/Procure Cryocooler
- Procure purification system (new cartridge, include liquid purification?)
- radioactive source calibration. Other calibration?
- Modify inner of cryostat
- Procure pumps (vacuum and recirculation)
- **——> 4-6 MONTHS**

C. Malbrunot - TRIUMF

17th October 2022

BACKUP - LOLX

Sources

Ba133

y without initial level have not been placed in the level schema y without intensity are expected but not observed

Gamma JCSV GData API

#	E _Y [keV]	I _{γ-} (abs) [%]	Initial level [keV]	Ju	Final level [keV]	J"	Mult.	δ	a _T	I _{Tot} [%]	Comments
1	53.1622 6	2.14 3	437.0113 9	1/2+	383.8491	3/2+	M1+E2	0.08 3	5.66 10		
2	79.6142 12	2.65 5	160.6121 9	5/2+	80.9979	5/2+	M1+E2(+E0)	0.124 15	1.77 3	E 8	
3	80.9979 11	32.9 3	80.9979 8	5/2+	0.0	7/2+	M1+E2	0.158 5	1.703	1 3	
4	160.6120 16	0.638 5	160.6121 9	5/2+	0.0	7/2+	M1+E2	0.96 5	0.294 6		
5	223.2368 13	0.453 3	383.8491 8	3/2+	160.6121	5/2+	M1+E2	-0.114 14	0.0975		
6.	276.3989 12	7.16 5	437.0113 9	1/2+	160.6121	5/2+	E2		0.0566		
7	302.8508 5	18.34 13	383.8491 8	3/2+	80.9979	5/2+	M1+E2	0.022 20	0.0434		
8	356.0129 7	62.05 19	437.0113 9	1/2+	80.9979	5/2+	E2		0.0254		
	383.8485 12	8.94 6	383.8491 8	3/2+	0.0	7/2+	E2		0.0202		

Na22

E	lectron	Captu	re and E	Beta+	tcsv	Dat Dat	a API						
#	<e<sub>β+> [keV]</e<sub>	l _{β*} (abs) [%]	E _{EC} [keV]	l _{EC} (abs) [%]	Daugh [keV]	ter level	3 "	Logft	т	rans	ition type	Cor	nments
	216.01 8	89.90 <i>9</i>	(1568.63)	10.04 9	1274.53	37	2+	7.41	a	llowe	d		1
2	835.46	0.055 14	(2843.13)	0.0010 3	0		0+	14.92	11 2	nd un	ique		
C	ithout intens	ty are expect	ted but not at	API	chemia								
#	E _γ [keV]	l _γ (abs) [%]	[%] <u>Λ</u>) β [*] Initia [keV]	al level	J" Fina [keV]	l leve	el Ju	Mult	. ō	ατ	I _{Tot} [%]	Commer
	1274.537	7 99.940	14 89.90	19 1274	.53 7	2+ 0		0+	E2		2.8E-05 3		

	Source						Ph	oto	babsorption Peak	K	SiP LV*	M Integrated Chains]	rge
	Ba133						35	6 k	eV		100	00	
	Na22						51	1 k	eV (+1275 keV?)		170	0 + (3100?)	
Cs137	Cs137						66	2 k	eV		200	00	
Warning y without initial level I y without intensity are Gamma	expected but not observed	level sch	iema		Ķ								
# ^E _Y I _Y [keV] [%	(abs) Initial level] [keV]	Ju	Final level [keV]	Ju	Mult.	δ	α _T	I _{Tot} [%]	Comments				
283.5 1 0. 2661.657 3 85	00058 8 283.50 10 5.1 2 661.659 3	1/2+ 11/2-	0.0 0.0	3/2+ 3/2+	M4		0.1124						

- •
- •

- •

to simulations

C. Malbrunot - TRIUMF

17th October 2022

Main lines (Above 10% BR): 80 keV [Ba133] 302 keV [Ba133] • 356 keV [Ba 133] 511 keV [Na22 e+ annihilation] • 662 keV [Cs137] 1275 keV [Na22] 1275 keV + 511 keV [Na22 Pileup]

Use for 4-point light yield calibration to compare

Update on Physics Opportunities with the Calorimeter prototype: $\mu \rightarrow 5e$

Doug Bryman October 13, 2023

New physics in multi-electron muon decays

Hostert et al. arXiv:2306.15631v1 [hep-ph] 27 Jun 2023

Matheus Hostert, a,b,c Tony Menzo,d Maxim Pospelov, b,c Jure Zupan,d

Muon decay to on-shell dark Higgs h_d $\mu^+ \rightarrow e^+ h_d; h_d \rightarrow \gamma_d \gamma_d \rightarrow 2(e^+ e^-)$ $\mu^+ \rightarrow e^+ e^+ e^- e^+ e^-$

 $Br(\mu \rightarrow 5e) \sim 10^{-12} \iff Mass scale \Lambda \sim 10^{15} GeV$

Current limit: Br($\mu \rightarrow 5e$)<4x10⁻⁶

New Calculation of the intrinsic background: <10⁻¹² to 10⁻¹¹

Integrated $B_{10}(\mu \rightarrow e \nu \nu \gamma)$ vs. E_{miss} for $E_{\gamma} < 10 MeV$.

 $E_{miss} = m_{\mu} - E_e - E_{\gamma}$

Figure 2: Differential branching ratio w.r.t. E_{miss} up to 10 MeV.

Experiment likely to be limited by random pile-up effects.

 $\mathcal{B}_{10}^{\text{incl}}(E_{\text{miss}} < E_{\text{max}})$ integrated up to E_{max}

$E_{\rm max}$	$\left. \mathcal{B}_{10}^{\mathrm{incl}} ight _{\mathrm{LO}}$	$\left. \mathcal{B}_{10}^{\mathrm{incl}} \right _{\mathrm{NLO}}$
	a - a(a) da 15	0.00(0) 40.15
1 MeV	$2.72(2) \cdot 10^{-15}$	$2.23(3) \cdot 10^{-13}$
$2{ m MeV}$	$1.76(1) \cdot 10^{-13}$	$1.54(3) \cdot 10^{-13}$
$3{ m MeV}$	$2.03(1) \cdot 10^{-12}$	$1.83(2) \cdot 10^{-12}$
$4\mathrm{MeV}$	$1.160 \cdot 10^{-11}$	$1.06(1) \cdot 10^{-11}$
$5{ m MeV}$	$4.488 \cdot 10^{-11}$	$4.12(1) \cdot 10^{-11}$
$6{ m MeV}$	$1.360 \cdot 10^{-10}$	$1.26(1) \cdot 10^{-10}$
$7{ m MeV}$	$3.484 \cdot 10^{-10}$	$3.23(1) \cdot 10^{-10}$
$8{ m MeV}$	$7.888 \cdot 10^{-10}$	$7.35(1) \cdot 10^{-10}$
$9{ m MeV}$	$1.626\cdot 10^{-9}$	$1.52(1)\cdot 10^{-9}$
$10{ m MeV}$	$3.111\cdot 10^{-9}$	$2.91(1) \cdot 10^{-9}$

PIONEER Calo Prototypes for $\mu \rightarrow 5e$ (LXe or LYSO)

Compared to the previous experiment: the PIONEER prototype can improve by $\sim O(10^4 - 10^6)x$ in a 10 day run