LYSO: CENPA Van der Graaf run and upcoming PSI beamtime

Omar Beesley, Bradley Taylor, Erik Swanson, David Hertzog

LYSO as a calorimeter option

- Fast (40 ns decay time)
- Bright (30,000 40,000 photons/MeV)
- High stopping power
 - Radiation length of 1.14 cm
 - Moliere radius of 2.07 cm
- Intrinsically segmented

BUT

 Resolution better than 4% has not been demonstrated for an array of LYSO crystals at 70 MeV

Overview

- We have done a significant amount of testing on single LYSO crystals
 - Energy resolution approaching 1.7 % at 4.14 MeV for a single crystal
 - Strong uniformity less than 4% variation within a single crystal
- CENPA Van der Graaf test of 2x2 LYSO array at 17.6 MeV done in September
- We will test an array of 10 LYSO crystals at energies ~70 MeV in November at PSI

Production of the 17.6 MeV resonance

- Proton of less than 1 MeV (avoid broad resonance at 1.03 MeV) is shot into a Li-7 target
- While in the target, the energy of the proton degrades until it reaches a resonance at 0.44 MeV and it captures on a Li-7 to produce Be-8
- 3. Be-8 quickly de-excites and produces a very sharp 17.6 MeV gamma (and some other broad lines)

PIONEER Collaboration

Our LYSO setup

- Light-tight box housing 4 crystals, PMTs and waveguides connecting the crystals to the PMTs
- Crystals were wrapped with smooth aluminum foil, waveguides were wrapped with crinkled aluminum foil, and waveguides were coupled to the crystals and PMTs using EJ-550 optical grease
- Crystal signals were read out by WaveDream DAQ

From waveforms to an energy resolution measurement

PIONEER Collaboration

Waveforms

OR trigger of -250 mV on the 4 LYSO crystals

- 1. When the system triggers, a pedestal is calculated as an average of the values of the first 20 (out of 1024 bins) of the waveform for each of the 4 waveforms
- 2. Each of the 4 waveforms is then integrated (channels more than a standard deviation from the pedestal)
- 3. The final event charge is then the weighted sum of the charges of the 4 waveforms where the weights are calibration constants (calibrations discussed on next slide)

Calibrations

Two calibrations were done for each of the 4 channels

- 1. Co-60 calibration on each of the xtals. The double peak from the Co-60 was fit and the difference in light output was determined for each crystal.
- 2. Calibration constants from the Co-60 tests are applied, the highest energy peak for each crystal is measured. Calibration constants are adjusted using the position of this peak.

Calibration constants were small – largest dataset had calibration constants of [1, 0.99187, 1.03036, 1.03502]

 $Q3_{Total} = c_1^*Q3_{vtal1} + c_2^*Q3_{vtal2} + c_3^*Q3_{vtal3} + c_4^*Q3_{vtal4}$

Omar Beesley - University of Washington

Fitting the resulting distribution

We are interested in the Gaussian core of this peak - core captures the imperfect energy resolution of LYSO

- 1. First, an exponential is fit to the background region away from the gaussian core
- 2. This background fit is extended to the signal region and fixed
- 3. A crystal ball function (Gaussian core, power law tail) is fit on top of this background
- The σ/E resolution at 17.6 MeV is then extracted to be 2.95% (Gaussian on exponential gives 2.93%)

MEG 17.6 MeV test

- MEG performed a similar 17.6 MeV gamma test of their LXe calorimeter using a Cockcroft-Walton proton accelerator and a Lithium target
- Their LXe calorimeter measured a 3.85% resolution at 17.6 MeV

https://www.sciencedirect.com/science/article/abs/pii/S016890021100687 5?via%3Dihub

LYSO beamtime at PSI

Primary goals for the PSI LYSO beamtime

- 1. Determine the energy resolution of an array of LYSO crystals at the PIONEER energy scale
- 2. Determine the losses in the calorimeter at the boundaries between crystals
- 3. Identify the electromagnetic physics list that most accurately describes albedo

 $Nal(Tl) \sim 5 \times 11 \text{ cm front}$

Drawings by Ryan Roehnelt

LYSO energy resolution measurement

- Use hodoscope to select events hitting center of LYSO array
- Walk beam energy from 50 to 150 MeV in 10 MeV steps
 - Make energy resolution measurement at each beam configuration
 - Understand "constant" contribution to energy resolution by analyzing energy resolution as a function of energy
- Repeat energy resolution measurement for different wraps/filter configuration
 - Unwrapped/ESR/Aluminum Foil

Energy Deposits from 70 MeV e+ in Array

Tests of losses at boundaries between crystals

In each measurement, we look at how the peak position changes in each step with beam at 70 MeV

- 1. Measure horizontal slices of the array with small steps
- 2. Slowly move beam over central boundary at multiple vertical positions

Albedo will be measured during LYSO beam tests and EM lists will be validated

- Shoot 70 MeV e+ beam at target of various materials (LYSO/NaI/Lead) and measure the albedo in our LYSO array
 - Energy deposits in LYSO array primarily from albedo
 - OR trigger on hodoscope and clock will be used to measure the background distribution
- Additional validation tests
 - Angular distribution of albedo
 - \circ Test ~1/r^2 dependence
 - $\circ \qquad {\sf Vary\, beam\, energy}$

Discussion

- We have measured an energy resolution of 2.95% at 17.6 MeV using a 2x2 array of LYSO crystals
- Previous MEG tests measured a resolution of 3.85% with their calorimeter using the same 17.6 MeV gamma
- In our upcoming beam test at PSI, we plan to test
 - The energy resolution of LYSO at energies around 70 MeV
 - The losses at the boundaries of LYSO crystals in an array
 - The albedo reflecting back from different targets in various configurations

Validation with a Nal detector

- A single Nal detector was placed in the same position as the LYSO array to validate our results
- This detector was only ~4-5 radiation lengths deep, which adversely affected resolution, but the same resonance was observed in this detector

Simulation of 17.6 MeV test in Geant4

- In Geant4, our CENPA test setup was simulated using an isotropic 17.6 MeV gamma source emitting 10 cm from the front face of our crystal array. A lead collimator similar to the one use in our CENPA runs is added
- We then smear the energy deposits in the LYSO array with 2% Gaussian smearing and fit the resulting distribution to obtain the resolution one might measure
- We measure a σ/E resolution at 17.6 MeV of 2.90% and the peak position is located at 17.2 MeV – this suggests that our energy resolution from the Van der Graaf test has been smeared due to leakage from the LYSO array (primarily a loss of 511 keV gammas)

Energy Deposits from 17.6 MeV Gamma in Array Smeared

Importance of testing the yellow filter

- Rectangular crystals demonstrate great uniformity (less than 4% variation within a crystal)
- Tapered crystals will have a focusing effect causing worse uniformity
- Light at wavelengths with short absorption lengths is the root of this effect
 - Idea: Use filter to only accept light that has a long absorption length
 - Test energy resolution with filter

Crystals		als	with		Mass		Pro	odu	ctio	on Capability			
Cr	ystal	Nal:Tl	CsI:Tl	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO ₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Densit	y (g/cm³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting	points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	1	2040
×o	(cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M	R _M (cm)		3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ,	(cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
	Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ_{peak}	ª (nm)	410	560	420 310	300 220	340 300	١	480	470	425 420	420	365	750
Refract	ive Index ^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	Λ	1.76
Norn Light	nalized Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	۸	25	5	0.4 0.1	100	1.5	λ
Total Li (ph)	ight yield /MeV)	35,000	58,000	1700	13,000	2,600	Λ	7,400	1,500	130	30,000	450	λ
Decay	time ^a (ns)	245	1220	30 6	600 0.5	30	١	300	100	30 10	40	40	3200
Hygr	oscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No