Brief tour of the Testbeam DAQ hardware

and the state of the second

Lawrence Gibbons

Platforms: build on CMS

UW uTCA crate

microTCA (μ TCA) crate w/ star topology

- backplane provides:
 - ethernet access
 - clock
 - TTC protocol
 - parallel 5 Gb/s readout
- $-\mu$ TCA Carrier Hub (MCH) provides (our use)
 - 1 Gb ethernet switch to backplane
 - IPMI for remote control and monitoring of crate

CERN Timing, Trigger and control (TTC) protocol (<u>https://</u> <u>ttc.web.cern.ch/</u>)

- basic 40 MHz frequency
- two-channel biphase encoding @ 160 MHz
 - Channel A: trigger distribution
 - Channel B: synchronous commands
 - g-2 used to specify "trigger type" of next trigger

Platforms: build on CMS

UW uTCA crate

microTCA (μ TCA) crate w/ star topology

- backplane provides:
 - ethernet access
 - clock
 - TTC protocol
 - parallel 5 Gb/s readout
- $-\mu$ TCA Carrier Hub (MCH) provides (our use)
 - 1 Gb ethernet switch to backplane
 - IPMI for remote control and monitoring of crate

CERN Timing, Trigger and control (TTC) protocol (<u>https://</u> <u>ttc.web.cern.ch/</u>)

- basic 40 MHz frequency
- optical two-channel biphase encoding @ 160 MHz
 - Channel A: trigger distribution
 - Channel B: synchronous commands
 - g-2 used to specify "trigger type" of next trigger

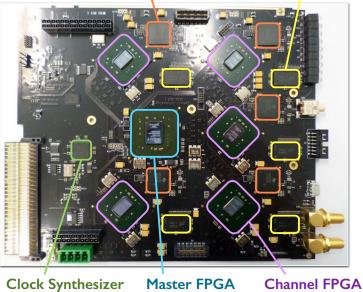
Platforms: build on CMS

UW uTCA crate

BU "AMC13" (http://amc13.info)

- recovers clock from TTC signal
- distributes clock, trigger, TTC over backplane to all "Advanced Mezzanine Cards" (AMCs) in crate
- asynchronously reads data for each trigger over 5 Gb/s backplane lines
- local even building
- data → midas frontend server via 10
 Gb ethernet
 - up to 3 links available we use 1 link

Platforms: build on CMS


UW uTCA crate

Encoder FC7

- encodes TTC protocol using
 - input precision 40 MHz clock
 - input external trigger
 - user-specified TTC trigger pattern
 - current firmware: up to 4 TTC triggers with specification of
 - » "type"
 - » delay
 - » width
- distributes optical TTC to AMC13 in up to 8 μ TCA crates
 - additional crates supported using "fanout FC7s" 16 per module
- distributes 4 analog copies of TTC
- can distribute up to 24 analog triggers based on input trigger
 - delay and width configurable

WFD5 digitizer AMCs

ADC (12-bit, 800 MSPS) DDR3 SDRAM (1 Gb) **TIADS5401** Micron MT41 64M16

TI LMK04096

Kintex 7K160T Kintex 7K70T

Main WFD5 board — power supply and analog front end mezzanines removed

5 channel digitizer

- based on TI ADS5401 ADC chip
 - up to 800 MSPS via 2 on-die interleaved 400 MSPS channels
 - common clocking \rightarrow stable 180° phase difference
 - but, odd/even sample pedestal difference
- dedicated FPGA and DDR3 buffering (64 MSamples) on each channel
- Currently 3 modes of operation
 - TTC-triggered circular buffer (suggested mode for pioneer testbeam work)
 - Via ODB, specify
 - » # samples total
 - » # samples preceding TTC trigger arrival
 - Buffers 128 Samples \leftrightarrow 160 μ sec @ 800 MSPS
 - TTC-triggered acquisition pattern (main g-2 mode)
 - can enable up to 3 patterns \leftarrow TTC trigger type
 - configurable via ODB
 - no sample buffering
 - · Circular buffer via front panel trigger
- Current analog front end mezzanine card
 - DC coupled differential signal (100 Ω impedance)
 - 1 V peak-to-peak maximum (ADC chip constraint)
 - 1.9 V common mode
 - ODB-configurable voltage offsets: use full ADC range w/ single-sided pulses

WFD5 digitizer AMCs

ADC (12-bit, 800 MSPS) DDR3 SDRAM (1 Gb) TIADS5401 Micron MT41 64M16 Master FPGA **Channel FPGA Clock Synthesizer** TI LMK04096 Kintex 7K160T Kintex 7K70T

Main WFD5 board — power supply and analog front end mezzanines removed

5 channel digitizer

- On-board clock synthesizer
 - up-converts 40 MHz TTC master clock from backplane
 - settings for 200, 300, 400, 600, 800 MHz in hand (specify via ODB)
- timing resolution(s):
 - sampling phase alignment across ADC chips (and WFD5 modules) not implemented
 - not the plan for pioneer digitizers!
 - g-2 template fits: timing jitter in WFD5 contributes < 20 ps to timing resolution
 - much smaller for timing comparisons within single WFD5
 - but beware: jitter on master 40 MHz distribution to AMC13
 - uTCA crates could differ by ±25 ns (one period) on timing of external trigger (in g-2 based on independent FNAL clock)
 - no jitter: timing <u>stable</u> after AMC13s lock on clock
 - g-2: simultaneous laser flash of all crystals resolves such issues automatically

Questions about system?

- I'll be posting documentation within the pioneer software/firmware GitHub repositories
- and / or please contact me...