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Part I
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The GIANT Setup
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GIANT
GermanIum Array for Non-destructive Testing
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GIANT: Detector Setup
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• Detectors

− Scintillator with Silicon Photomultiplier readout 

− Muon Counter

− Veto Detector

− High Purity Germanium detectors

− currently 11 detectors (up to 30 total)

− various types (slightly different response)

− shared with multiple other experiments

− Silicon Drift Detectors 

− testing phase – currently 2 detectors

− good candidates for low energy, low noise

− similar signal structure

Ø 18mm

active Veto
200 µm

µ-counter

µ-

Start T
ime Only!
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• MIDAS DAQ system (PSI development)

− ingests and stores VME digitzer data

− efficient binary format (easily convertible to more standard formats)

− online preanalysis allows status monitoring

− includes slow control (liquid nitrogen cooling, beam monitoring, etc.) 

• Digitizer: Struck SIS3316-250-14 VME

− 16 channels with 2V or 5V selectable dynamic range

− 14-bit resolution with 250 MSps sampling rate 

− trapezoidal filter with decay time correction implemented on FPGA

− fast optical readout

− (partial) waveform readout for original and filtered waveforms

− we usually store ~400 samples (~1.4µs per event)

− allows for offline baseline correction

− multiple devices chainable (external clock available)

GIANT: DAQ Setup
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High Purity Germanium detector signal
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Baseline

Charge Collection

Discharge (decay time constant)

Integrated Charge (∝ Photon Energy)

Potentially “best” method
at least in terms of energy resolution (measurement precision)



High Purity Germanium detector signal
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?

But what about pileup – multiple photons at once?

And what about storage?

14 bit x 50.000 samples ≈ 1 MB per event

Tens of TB per Measurement!

needs sophisticated analysis 

(difficult purely in hardware)



High Purity Germanium detector signal
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Good alternative – Trapezoidal Filter

MA1

MA2

tau correction

Pileup√

And what about storage?
14 bit x 4 values ➔ few GB per sample

Easy to implement in 

hardware (FPGA)



High Purity Germanium detector signal
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Disadvantages of Trapezoidal Filter

“Optimal” filter parameters 

strongly depend on detector

?

multiple decay constants

Incorrect tau correction can

introduce baseline error

?



Part II
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Energy Spectrum (Y88 radioactive source)
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Energy Calibration

Proper calibration for every detector:

many lines over wide range

using non-linear corrections
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Muonic Energy Spectrum including timing

Page 14

X-ray cascade: 

prompt, <100ns delay

Nuclear Capture and 

subsequent decay: 

delayed, >100ns delay



• So far only qualitative results ➔Which elements / isotopes do we find in a sample?

• Quantitative results are much harder to obtain!

− Theory results on relative intensities are currently very unreliable

Quantitative Results
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Energy 

Calibration

Detector

Efficiency

Detector

Resolution
Attenuation of X-rays and gammas 

depends on exact material composition, 

density and penetration depth of the muon!

Reference Samples allow for 

relative measurements

Cu isotopes

Cu composites



Part III
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Baseline correction
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• Unoptimized trapezoidal filter settings and pile-up can lead 

to reduced energy / timing resolution and “missing” peaks

• Machine Learning Model could be used to

− efficient optimization of trapezoidal filter parameters, e.g. reinforcement learning

− replace trapezoidal filter by advanced algorithm based on neural network model

− train using clean set of events with full waveforms

− implement resulting model directly on FPGA?



Peak identification

Page 18

• Currently, the peak Identification is most serious analysis bottleneck!

− has to done by experienced MIXE scientist 

(usually not by the user)

− very time-consuming manual labor

− overlapping peaks can make ID ambiguous

− can not be done online → usually no ad-hoc

decisions regarding the measurement 

• Machine Learning Model could be used to

− directly identify relevant peak candidates 

based on a dictionary learning approach

− give probabilities for candidates based on full spectrum (not only single peaks)

− empower users to analysize data without domain knowledge

− allow for “online” (within minutes) analysis of spectra



Thank you for your attention!
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Any Questions, Comments or Suggestions?



Bonus: Tracking
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Twin GEM-TPC Tracking chamber
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• Twin Time-Projection-Chamber

− 1D strip readout – 1024 channels in total

− X (cluster on strips) & Y (drift time)

• Currently track is given by 2 points

− simple average of spatial charge distribution (X)

− simple average of temporal charge distribution (Y)

• Machine Learning Model could be used to

− recover angle information within each TPC

− determine quality of the track

− increase detector resolution

− could be implemented e.g. as (convolutional)

neural network, trained with simulation (existing)
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