

The BESSY III Lattice

A highly competitive non-standard lattice for a 4th gen. Light Source with Metrology and Timing Capabilities

P. Goslawski for the CDR, accelerator & lattice design team

(M. Arlandoo, **M. Abo-Bakr, B. Kuske, J. Bengtsson, J. Völker**, V. Dürr, A. Jankowiak et al.,) (K. Holldack, Z. Hüsges, K. Kiefer, A. Meseck, R. Müller, M. Sauerborn, O. Schwarzkopf, J. Viefhaus et al.,) Combined function Or Homogenous bend

Overview - The Menu

- What is currently going on...
 - HZB with BESSY II & MLS (PTB)
 - BESSY II+ with focus on operando capabilities, modernization & sustainability

- BESSY III
 - Overview, Goals, Planning, Parameters
 - Towards a BESSY III design lattice

A Metrology Solution, an unconventional, but competitive approach

Two partners & two synchrotron radiation sources

ernsehturm am Alexanderplatz

BESSY II

1.7 GeV, DBA, 5 nm rad, 300 mA 240 m, 16 Straights, 5 m since 1998

Soft and tender X-rays Spectro-Microscopy Timing: low α , femto-slicing SB, VSR, TRIBs/2-Orbits

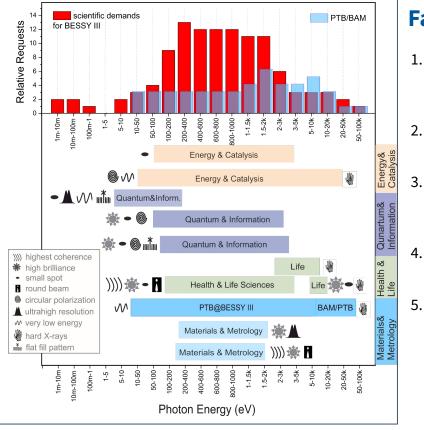
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

MLS Metrology Light Source 630 MeV, DBA 100 nm rad, 200 mA 48 m, 4 Straights since 2007

THz / IR to VUV, EUV Optimised for low α , SSMB studies

ZEISS

Solar Energy	Chemical Energy	Quantum & Functional Materials
Photon Science	Accelerators	Scientific Instrumentation & Support


BESSY III - The triad for a world leading facility for material discovery

a globally competitive 4th generation synchrotron radiation source
 embedded in the integrated research campus Berlin-Adlershof
 dedicated to metrology and metrological materials science

BESSY III Requirements & Objectives

Facility parameters

- 1. 1st undulator harmonics polarized up to 1 keV from conventional APPLE-II
- 2. Diffraction limited till 1 keV
 - Stay in Berlin-Adlershof
 - Nanometer spatial res. & phase space matching
 - PTB/BAM metrology applications

Already at BESSY II, a 3rd generation **without** combined function bends

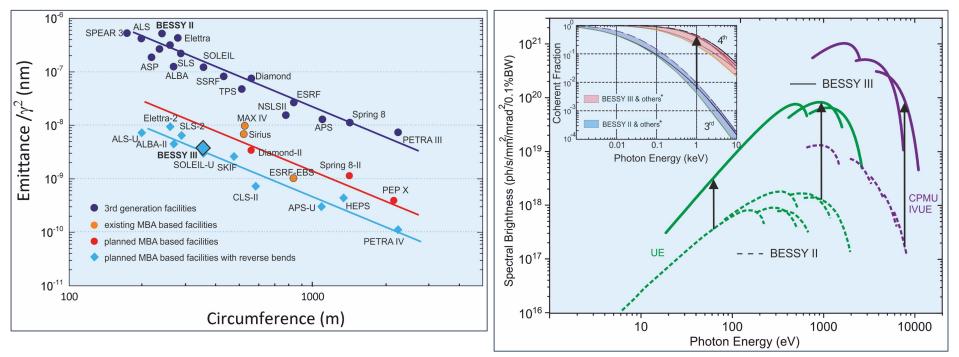
Ring parameters

- 1. Ring Energy **2.5 GeV** (1.7 GeV)
- 2. Emittance

100 pm rad (5 nm rad)

- 3. Circumference **350 m 16 straights @ 5.6 m** (240 m @ 4.5 m)
- 4. Low beta straights & maybe round beams
- 5. Metrology source Homogenous bends

Measuring the field at the source point with a NMR probe in a volume of 10x10x10 mm


6. Momentum compaction factor

> 1.0e-4

BESSY III

100x times more brightness than BESSY II & 1000x times smaller focus at sample (10μm down to 10nm)

In situ & operando, sample environment, material labs

→ Integrated Research Campus

Overview - BESSY II+ / III

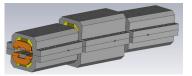
Towards BESSY III by using BESSY II, BESSY II+

BESSY II+ paves the way to BESSY III

BESSY II+	BESSY II+ project						Operation										
	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	20	35 2036		
	Beamline Transfer																
		CDR			Т	DR		Project/Cons			struction			om.	Operation		ion
BESSY III	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	203	35	2036	

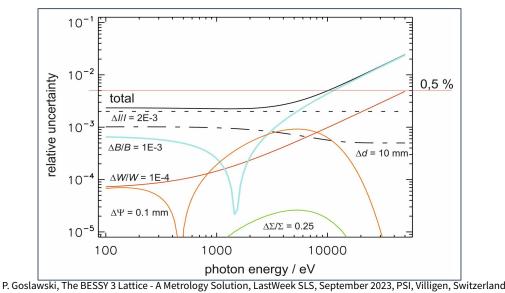
BESSY II+ application/project: operando capabilities, modernization, and sustainability.

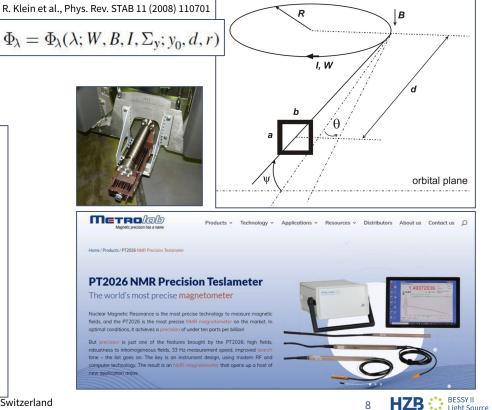
100 M€ (25 % HZB, 25% strategic partners or third-party projects, 50 % request funding bodies) split up in 50 % for 8 new beamlines, endstations & sample environment, ______ Future 15 % for improving the sustainability of BESSY II, 35 % modernization of the accelerator complex BESSY III Hardware / Tech.


Future BESSY III Science Case

Active Higher-Harmonic Cavities together with ALBA & DESY – first beam test in BESSY II now !

Hybrid-Permanent Magnets
replace power hungry (30 kW)
bending electromagnet
in BESSY II transferline
metrology suitable PM dipole




HZB :: BESSY II Light Source

PTB (Physikalisch Technische Bundesanstalt) - Metrology Sources, Homogenous Bends

An absolute measurement of the radiation power with highest accuracy

- Schwinger equation with its parameters
 - Electron Energy W with rel. unc. < 5e-4
 - Electron Current I with rel. unc. < 2e-4
 - Magnetic Field B with rel. unc. < 1e-4
 - Source size & div. with rel. unc. < 20 %
 - Distance to apert. with rel. unc. ~ 2 mm

BESSY III Lattice Design

A Metrology Solution, an unconventional, but competitive approach

4th Generation Lightsource Lattices

The Higher Order Achromat, HOA-MBA

• MAX IV, SLS 2.0 ... up to 3 GeV

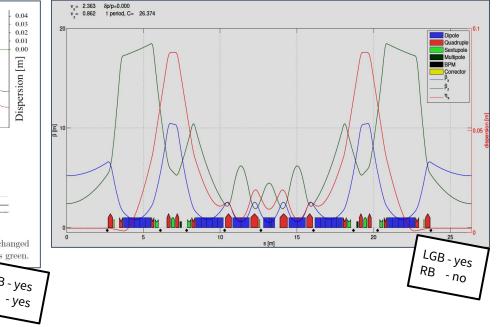
The Hybrid, HMBA

- ESRF-EBS, PETRA IV ... above 3 GeV
- δp/p=0.000 2.363 18 v = 0.862 1 period, C= 26.374 0.08 16 Dipole 0.07 Quadrup Sextupol 14 Multipol 0.06 Beta Functions [m] Dispersion [m] 12 0.05 10 0.04 8 0.03 E 10 6 0.02 0.01 4 2 0 0 -0.01 LGB - no 25 5 10 15 20 0 RB s [m] - no s [m] LGB - yes Figure 3 RB β functions and dispersion for one achromat of the MAX IV 3 GeV - no storage ring. Magnet positions are indicated at the bottom.

• A. Streun, J. Bengtsson, S. Leeman, et al.

• P. Raimondi

4th Generation Lightsource Lattices

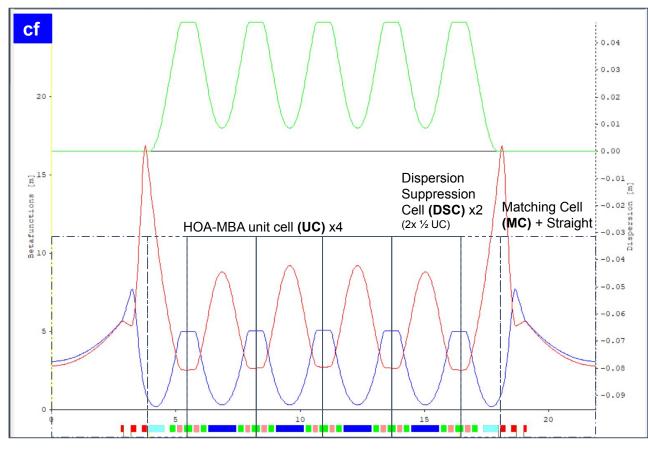

The Higher Order Achromat, HOA-MBA

- MAX IV, SLS 2.0 ... up to 3 GeV
 - A. Streun, J. Bengtsson, S. Leeman, et al.

0.04 0.03 10 0.02 η_x 0.01 Beta functions [m] 8 0.00 β_x Ш Dispersion 10 15 20 Poletip field [T] 5 4 3 dipole quadrupole 2 total 5 10 15 20 s [m] Figure 2.3: Optical functions and field components for one 7BA-arc where the center LGB has been interchanged by a super-LGB of 5.5 T peak field. Bending magnets are in dark blue, quadrupoles red and sextmodes green. LGB - yes

The Hybrid, HMBA

- ESRF-EBS, PETRA IV ... above 3 GeV
 - P. Raimondi



P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, LastWeek SLS, September 2023, PSI, Villigen, Switzerland

RB

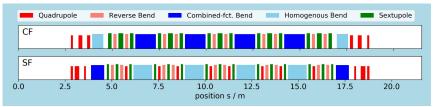
LEGO Approach - Basic building blocks of one sector

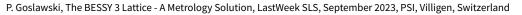
UC - Unit Cell DSC - Dispersion Suppress.. MC - Matching Cell

A 6-MBA has 5-MBA-UC 4 pure UC and 1 (2 x $\frac{1}{2}$) broken UC \rightarrow DSC

16 straights & sectors:

360° / 16 = 22.5° per sector 4*4.5° main UC bend & 2*2.25° DSC bend


The process towards a BESSY III lattice - metrology challenge


A deterministic lattice approach

- Stepwise: Power and Function of each Component &"Knob" → **LEGO approach**
- After first "wild" lattices we concluded on:
- Limiting the hardware (conservative ansatz)
 - Bore diameter of 25 mm
 Diameter inner/outer vac. pipe of 18/21 mm
 - \circ Bends up to 1.4 T
 - \circ ~ Combined fct. Bend 0.8 T & 15 T/m or 30 T/m ~
 - Quads up to 60 80 T/m (depends on RB)
 - \circ Sextupoles up to 4000 T/m²
 - Spacing between magnets 100 mm
- **H**igher**O**rder**A**chromat Approach:
 - 6MBA + homogenous metrology bend
 - With Reverse Bends, so far no LGBs

A homogenous metrology bend

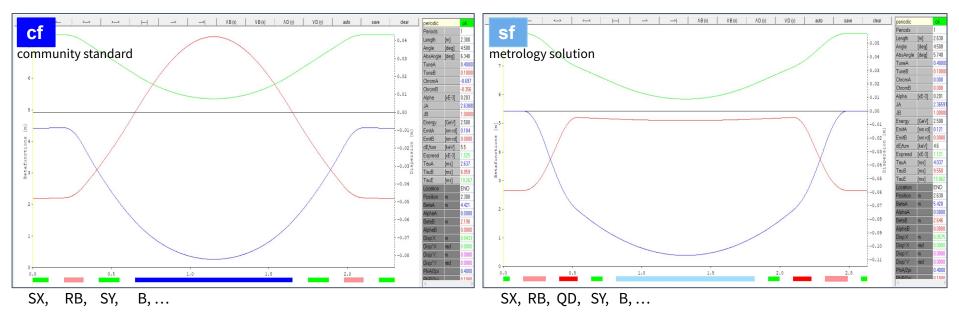
- Include it right from the beginning
 → Symmetric sector cell ansatz
- Two lattice candidates:
 - cf-lattice: combined function bend In center of 6MBA (community standard) sf - cf - cf - cf - cf - sf cf - cf - cf - cf - cf
 - sf-lattice: separated (homogenous) Bend in the center of 6MBA (metrology): cf - sf - sf - sf - sf - cf sf - sf - sf - sf - sf

LEGO approach of building a lattice Setting up and investigation the individual components

- **MBA-unit cell (UC)**, Dispersion suppression cell (DSC), Matching Cell (MC) Quadrupol-Triplett + straight
 - **MBA-UC:** Main bend; 2x focusing in x,y plane; 2x sextupoles for chromaticity correction
- Pure 6-MBA **HOA** fixed phase advances between sextupoles, defines the MBA-UC !!
 - Integer tunes UC: (0.4, 0.1) * 5 = (2.0, 0.5), Section (2.75, 0.8125), Ring (44, 13)
 - 2 families of chromatic sextupoles **only**. SX & SY to fit chromaticity to zero
- Findings, Results:

Ο

$$\xi = \frac{\Delta Q}{\Delta p/p} \sim \oint -k_1(s)\beta(s)ds$$
$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$



The process towards a BESSY III lattice - Linear Beam Dynamics LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

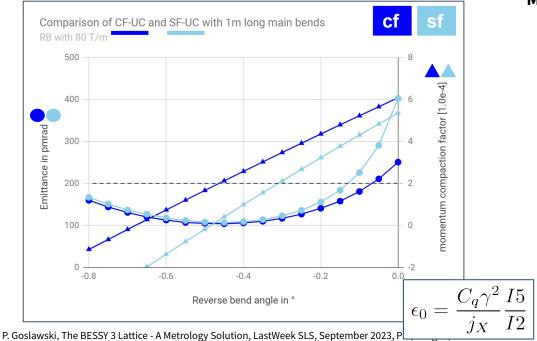
- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)


Magnet arrangement Cf sf CF-UC with 1m long main bends SF-UC with 1m long main bends Jx = 1.7 Jx = 1.0 500 500 Emittance in pmrad 🔺 mom. comp. factor 1.0e-4 Emittance in pmrad mom. com. factor 1.0e-4 compaction factor [1.0e-4] compaction factor [1.0e-4] 400 400 Emittance in pmrad Emittance in pmrad 300 300 200 momentum momentum 100 0 100 0 Jx = 2.3 Jx = 2.5 0 -0.2 -0.8 -0.6 -0.4 0.0 -0.8 -0.6 -0.4 -0.2 0.0 $C_q \gamma^2 I5$ Reverse bend angle in ° Reverse bend angle in ° $\epsilon_0 =$ P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, LastWeek SLS, September 2023, P 16

and for the hardware specifications of our project

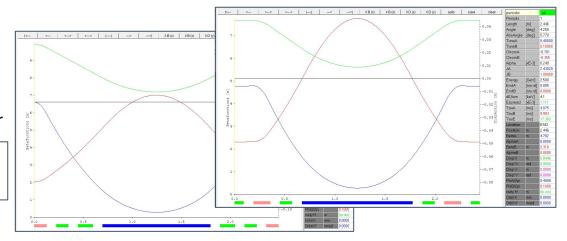
Impact of reverse bend on alpha & emittance

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement



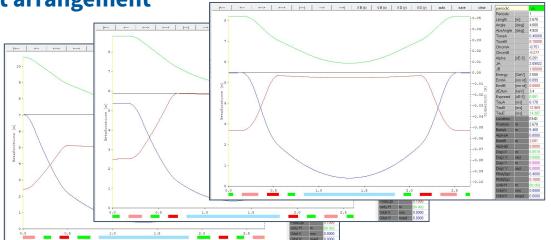
LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

• The cf MBA-UC:

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
SX, RB, SY, B	2.446 m	2.5e-4	95 pm rad	-0.38 ° (k = 6.7) L = 0.163*2	-0.701, -0.355	<mark>2324.77</mark> 21.02, -26.84
RB, SX, SY, B	2.490 m	2.7e-4	95 pm rad	-0.26° (k = 6.8) L = 0.125 *2	-0.802, -0.278	<mark>3905.21</mark> 27.96, -34.22


LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC ?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

• The sf MBA-UC:

0

	SetUp	Jp Length alph		Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]				
	SX, RB, <mark>QD, SY</mark> , B	2.670 m	2.0e-4	100 pm rad	-0.23 ° (k = 8.6) L = 0.175*2	-0.751, -0.277	<mark>901.43</mark> 10.56, -18.42				
-	SX, RB, <mark>SY, QD</mark> , B	2.610 m	2.1e-4	98 pm rad	-0.23° (k = 8.5) L = 0.14 * 2	-0.740, -0.295	<mark>1500.19</mark> 17.60, -20.98				
slaw	RB, SX, QD, SY, B	2.700 m rology Solutior	2.0e-4 , LastWeek SLS	98 pm rad , September 2023, PS	-0.19° (k = 8.4) I, Villīgen, twitzerland	-0.835, -0.232	2781.58 19.39, -31.86 19 HZB :				

The process towards a BESSY III lattice - Linear Beam Dynamics **LEGO approach - Unit Cell - Impact of Reverse Bend**

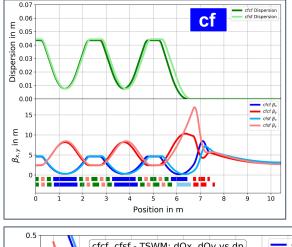
- The two different MBA-UCs: cf & sf
- UC (4.5°) : Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)•

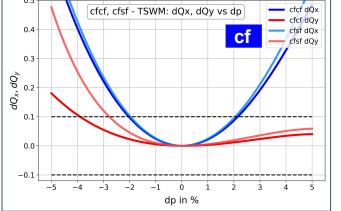
Magnet arrangement Cf st Cf S cfcf Dispersion Comparison of CF-UC and SF-UC with 1m long main bends sfsf Dispersion Dispersion 20.0 0.02 0.00 cfcf 6 [1.0e-9 400 sfsf A momentum compaction factor Ε .⊆ $\beta_{x,y}$ 0 -0.8 -0.6 -0.4 -0.2 0.0 $C_q \gamma^2 I \overline{5}$ 0.2 0.4 1.0 1.8 20 Reverse bend angle in ° 1.2 1.4 1.6 2.2 2.4 2.6 $\epsilon_0 =$ Position in m

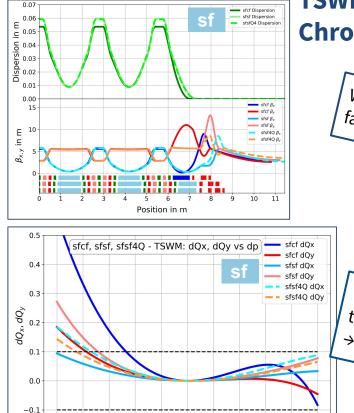
and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance

20

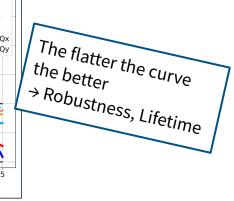

2.8


P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, LastWeek SLS, September 2023,


Emittance in pmrad

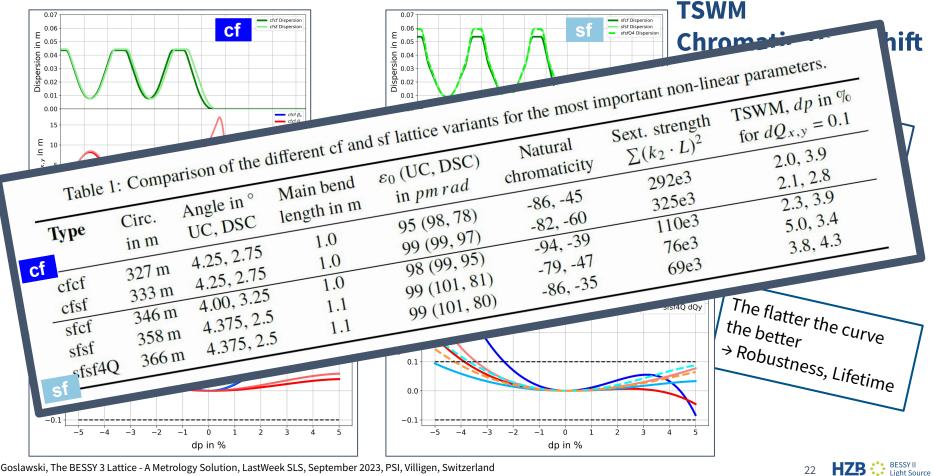
-5

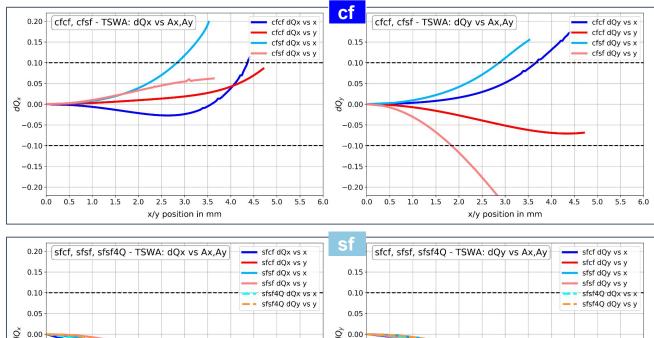
-3 -2 -1 0



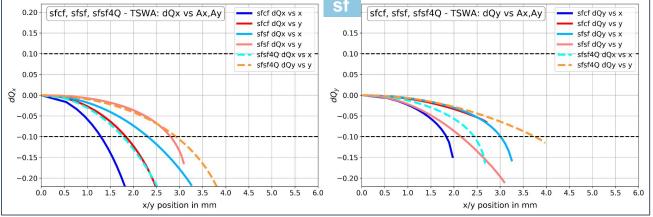
2 3

dp in %


TSWM Chromatic Tune Shift

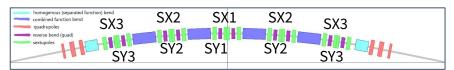


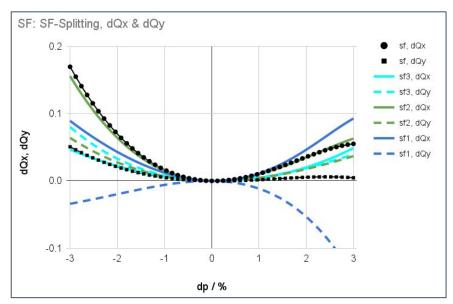
21


HZB :: BESSY II Light Source

22

TSWA Amplitude Dependent Tune Shift

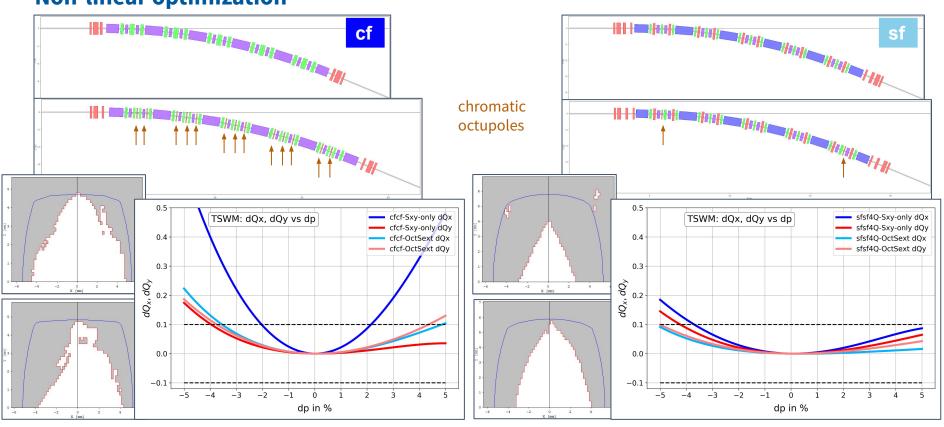



Non-linear optimization

- Defining target parameters for non-linear optimization and "knobs"
- **Target parameters:** (benchmark MAX IV, SLS2):
 - Tune Shift With Momentum TSWM:
 ΔQx, ΔQy ~ 0.1 at Δp = +-3% (+-5%)
 - Tune Shift with Amplitude TSWA:
 ΔQx, ΔQy ~ 0.1 limits acceptance ~3mm

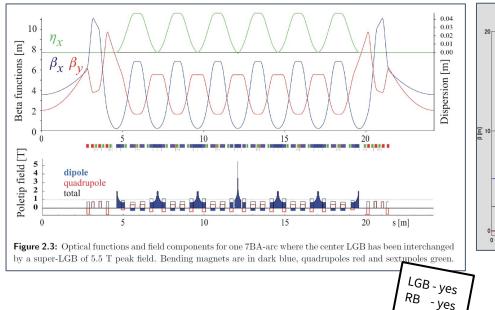
• Knobs:

- Chromatic Octupoles for 2nd order chromaticity
- Split up of chromatic sextupoles (TSWM + TSWA)
- Findings, Results:
 - The two lattice candidates show an opposite behavior in order to reduce TSWM
 - SF3 with biggest impact at sf lattice
 - SF1 with biggest impact at cf lattice



In progress

Non-linear optimization

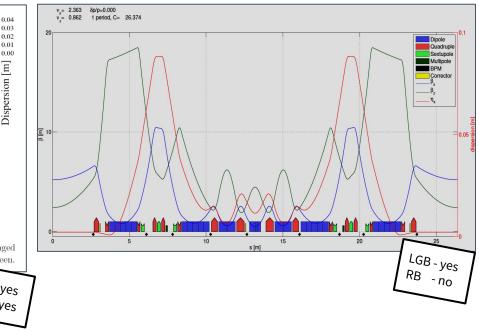


4th Generation Lightsource Lattices

The Higher Order Achromat, HOA-MBA

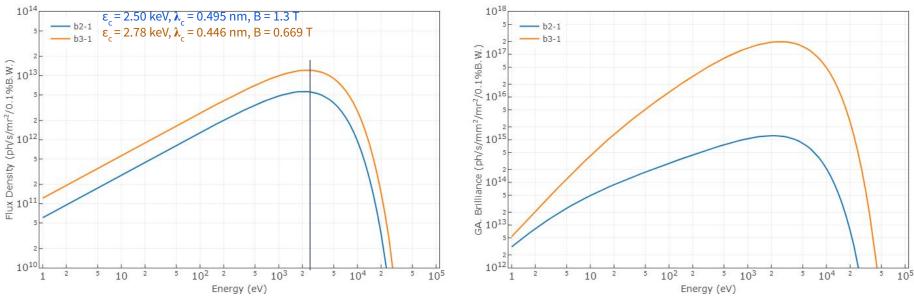
- MAX IV, SLS 2.0 ... up to 3 GeV
 - A. Streun, J. Bengtsson, S. Leeman, et al.

The Hybrid, HMBA


• ESRF-EBS, PETRA IV ... above 3 GeV

In progress

Light Source

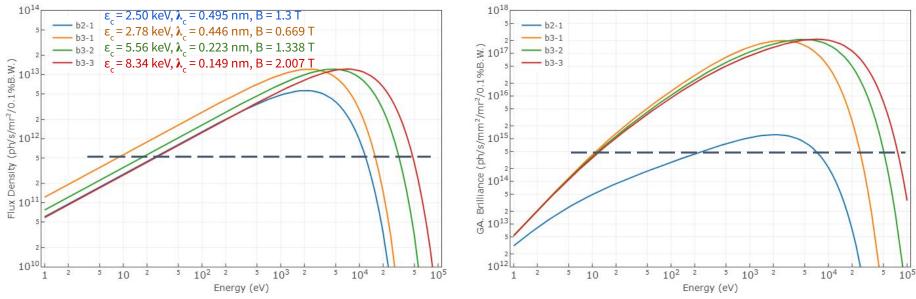

26

• P. Raimondi

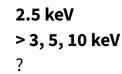
Homogenous bends and/or Longitudinal Gradient Bends

- Two/Three applications:
 - PTB, Metrology, similar to BESSY II (primary radiation standard):
 - Tender X-rays bends:
 - Hardest X-rays bends, 20 keV and beyond:

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, LastWeek SLS, September 2023, PSI, Villigen, Switzerland



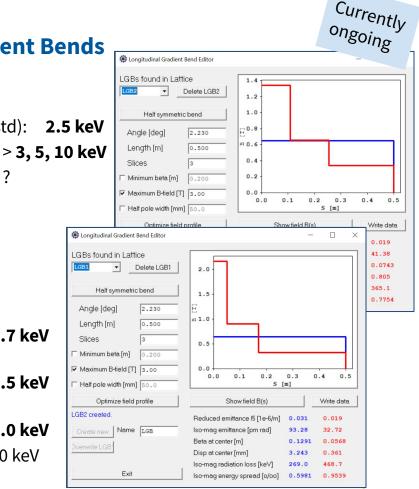
HZB ::: BESSY II Light Source


27

Homogenous bends and/or Longitudinal Gradient Bends

- Two/Three applications:
 - PTB, Metrology, similar to BESSY II (primary radiation standard):
 - Tender X-rays:
 - Hardest X-rays, 20 keV and beyond:

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, LastWeek SLS, September 2023, PSI, Villigen, Switzerland

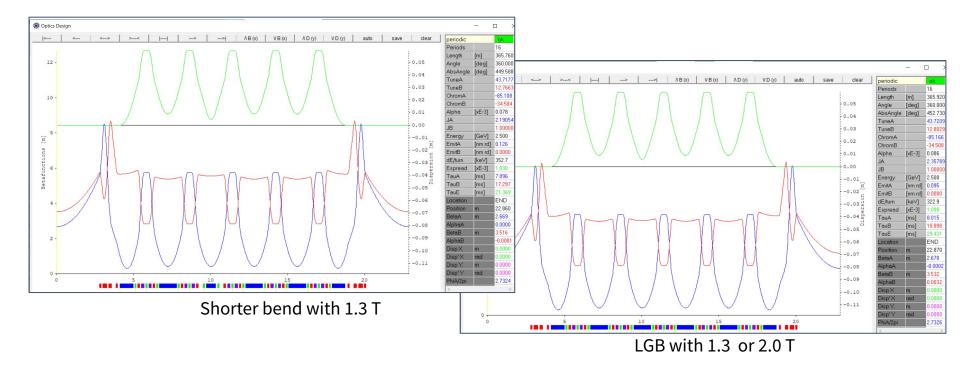

HZB ::: BESSY II Light Source

28

Homogenous bends and/or Longitudinal Gradient Bends

- Two/Three applications:
 - PTB, Metrology, similar to BESSY II (primary rad. std): 2.5 keV
 - Tender X-rays:
 - Hardest X-rays, 20 keV and beyond:

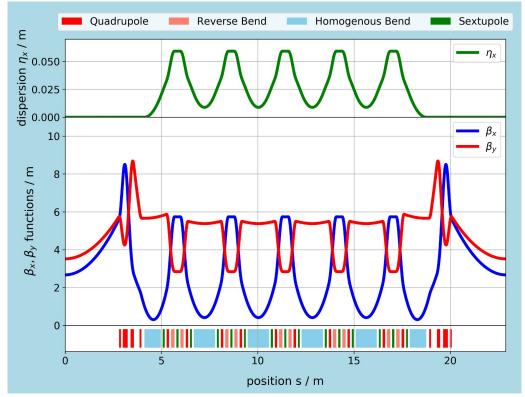
- An approach: Longitudinal Gradient Bends (LGBs):
 - Homogenous Bend: L = 1.0 m, 4.46°, rho = 12.85 m, B = 0.65 T, Ec = 2.7 keV
 - LGB 1.3 T L = 0.22 m, 2.0°, rho = 6.3 m, B = 1.3 T,
 Ec = 5.5 keV
 - LGB 2.2T
 L = 0.1 m, 1.45°, rho = 3.85 m, B= 2.2 T, Ec = 9.0 keV
 - Hardest X-rays: SC Bend with > 5 T gives
 Ec = 20 keV



29

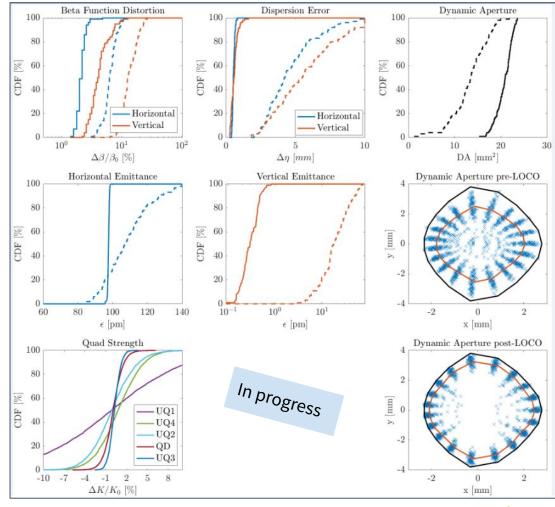
Light Source

Homogenous bends and/or Longitudinal Gradient Bends



The process towards a BESSY III lattice - Summary

Homogenous bend lattice


- With advantages:
 - Strongly reduced sextupole strength for chromaticity correction
 - Better momentum acceptance due to reduced higher order chromaticity contributions
- Next steps:
 - Non-linear optimisation scheme
 - Robustness & Tolerance analysis
 - Injection scheme & Collective effects
 - Intensify discussions with construction & engineering department

The process towards a BESSY III lattice

Simulated Commissioning Robustness Analysis

Thank you for your attention !

Entering the CDR Phase with **New Positions:**

Magnet Development	_>	J. Völker
Beam Dynamics	_ >	P. Goslawski
Overall	_>	A. Jankowiak

See HZB homepage:

(if available again after CyberAttack)

www.helmholtz-berlin.de

