Zuoz Summer School 2024: "From low to high: Particle Physics at the Frontier"

Low Energy Physics (I)

Vincenzo Cirigliano University of Washington

Goal of these lectures

Provide an introduction and theoretical perspective to the so-called Precision / Intensity Frontier of particle and nuclear physics:

Searches for new phenomena beyond the Standard Model through precision tests or the study of rare processes at low energy**

** The separation is arbitrary — here I will focus mostly on probes at E < b-quark mass

Flow of the lectures

- The quest for new physics at the low-energy frontier
- How does the precision / intensity frontier work? (Theory perspective)
 - An example from history: the Standard Model itself!
 - Effective field theory (EFT) framework
 - Standard Model EFT landscape in the LHC era and beyond
- "Zoom in" on selected low-energy probes: illustrate methods and impact
 - Precision measurements:
 - Weak charged current processes (beta decays)
 - Symmetry tests:
 - Lepton Number and Lepton Flavor Violation

The quest for new physics at the low energy frontier

New physics: why?

• The Standard Model is remarkably successful, but it's probably incomplete

No Baryonic Matter, no Dark Matter, no Dark Energy, no Neutrino Mass

What stabilizes G_{Fermi}/G_{Newton} against radiative corrections? Do forces unify at high E? What is the origin of families? What about gravity? ...

Addressing these puzzles likely requires new physics

New physics: where?

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?

• Two complementary paths to search for new physics

• Two complementary paths to search for new physics

• Two complementary paths to search for new physics

• Two complementary paths to search for new physics

• Both frontiers needed to reconstruct BSM dynamics: structure, symmetries, and parameters of \mathcal{L}_{BSM}

• Two complementary paths to search for new physics

The Precision Frontier cuts across AMO, HEP & NP

• Three classes, pushing the boundary in qualitatively different ways and at different mass scales

• Three classes, pushing the boundary in qualitatively different ways and at different mass scales

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0V\beta\beta$ decay, p decay EDMs, LFV ($\mu \rightarrow e$, ...)

 Three classes, pushing the boundary in qualitatively different ways and at different mass scales

> I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0V\beta\beta$ decay, p decay EDMs, LFV ($\mu \rightarrow e$, ...)

 Precision measurements of SM-allowed processes: β-decays (mesons, neutron, nuclei), muon g-2, PV electron scattering, ...

 Three classes, pushing the boundary in qualitatively different ways and at different mass scales

> I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0V\beta\beta$ decay, p decay EDMs, LFV ($\mu \rightarrow e$,, ...)

 Precision measurements of SM-allowed processes: β-decays (mesons, neutron, nuclei), muon g-2, PV electron scattering, ...

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and "fifth force" mediators, axions, ...

Impact of low-energy probes

- Discovery potential
 - Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
 - A single deviation from SM expectation \rightarrow new physics!

Impact of low-energy probes

- Discovery potential
 - Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
 - A single deviation from SM expectation \rightarrow new physics!

- **Diagnosing power** (when combining multiple probes)
 - Multiple EDM searches \rightarrow underlying sources of CP violation
 - $0\nu\beta\beta$ decay, absolute ν mass measurements, ν oscillations, LFV ($\mu \rightarrow e, \tau \rightarrow e, \mu, ...$) \rightarrow origin of neutrino mass
 - ...

Impact of low-energy probes

- Discovery potential
 - Explore physics that is otherwise difficult / impossible to access: high mass scale; symmetry breaking; ultralight particles
 - A single deviation from SM expectation \rightarrow new physics!

- **Diagnosing power** (when combining multiple probes)
 - Multiple EDM searches → underlying sources of CP violation
 - $0\nu\beta\beta$ decay, absolute ν mass measurements, ν oscillations, LFV ($\mu \rightarrow e, \tau \rightarrow e, \mu, ...$) \rightarrow origin of neutrino mass
 - ...
- Shed light on some of the big open questions about fundamental interactions

Connection to big questions

Baryogenesis requires (Sakharov)

- B (L) violation
- C and CP violation
- Departure from equilibrium

Baryogenesis does not work in the Standard Model

Baryon asymmetry (violation of B, L, CP)

Connection to big questions

Origin of neutrino mass

Baryon asymmetry (violation of B, L, CP)

Nature of dark matter

Are there new forces, weaker than the weak force?

Connection to big questions

Theoretical challenges

- Multi-scale problem: need to connect possibly high-energy interactions written at the quark-gluon level to hadrons / nuclei
 - squark Quarks, **BSM** scale Even when studying gluons gaugino leptonic properties, q P handling hadron physics is essential (muon g-2, mu-to-e conversion, ...) Mesons, Hadronic scale Baryons Tools: effective field theory, Lattice QCD, dispersion relations, nuclear many Nuclei Nuclear scale body methods, ...

How does the precision frontier work? (Theory perspective)

Theory framework(s)

I/Coupling

To motivate and analyze precision frontier searches, two fairly general EFT-based theory framework(s) have emerged, encompassing many underlying models

- High scale (UV) new physics: Standard Model EFT and its siblings
- Light & weakly coupled new physics: dark sectors and 'portals'

UV new physics: Standard Model EFT

How do heavy particles affect physics at E << M?

Exchange of heavy particles generates a series of local interactions of increasing mass dimension (multiplied by inverse power of the new physics mass scale) consistent with the underlying symmetries (Lorentz, gauge, ...)

UV new physics: Standard Model EFT

How do heavy particles affect physics at E << M?

Exchange of heavy particles generates a series of local interactions of increasing mass dimension (multiplied by inverse power of the new physics mass scale) consistent with the underlying symmetries (Lorentz, gauge, ...)

Homework

- Work out mass dimension of fields:
 - Spin I/2: [Ψ]=3/2
 - Spin 0 and 1: $[\phi] = [V_{\mu}] = I$

UV new physics: Standard Model EFT

How do heavy particles affect physics at E << M?

 $[\Lambda \leftrightarrow M_{BSM}]$

Exchange of heavy particles generates a series of local interactions of increasing mass dimension (multiplied by inverse power of the new physics mass scale) consistent with the underlying symmetries (Lorentz, gauge, ...)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Appelquist-Carazzone 1975

Weinberg 1979, Wilczek-Zee1979, Buchmuller-Wyler 1986,

B. Grzadkowski, M. Iskrzyński , M. Misiak, J. Rosiek, 2010

Alonso, Jenkins, Manohar, Rodrigo, Trott 2013

Light & weakly coupled new physics: portals

"Portals": dominant interactions through which the SM and dark sector couple (↔ lowest dimensional SM singlet operators)

Credit: Stefania Gori

$$\mathcal{L} \sim O_{\text{portals}} + O\left(\frac{1}{\Lambda}\right)$$

$$O_{\text{Vector}} = -\frac{\epsilon}{2} B^{\mu\nu} F'_{\mu\nu}$$

$$O_{\text{Neutrino}} = -Y_N^{ij} \bar{L}_i H N_j$$

$$O_{\text{Higgs}} = -H^{\dagger} H \left(A S + \lambda S^2\right)$$

Leading axion interactions appear at $O(1/\Lambda)$:

 $aF\tilde{F}/f_a$, $aG\tilde{G}/f_a$, $\bar{\psi}\gamma^{\mu}\gamma_5\psi \partial_{\mu}a/f_a$

- Key point: particles of mass M affect physics at E << M by inducing
 - a shift in coupling constants of known interactions
 - new local interactions suppressed by powers of E/M

- Key point: particles of mass M affect physics at E << M by inducing
 - a shift in coupling constants of known interactions
 - new local interactions suppressed by powers of E/M

"Top-down": heavy particle exchange generates new local interaction

Tree level example

- Key point: particles of mass M affect physics at E << M by inducing
 - a shift in coupling constants of known interactions
 - new local interactions suppressed by powers of E/M

"Top-down": heavy particle exchange generates new local interaction

Loop level example

- Key point: particles of mass M affect physics at E << M by inducing
 - a shift in coupling constants of known interactions
 - new local interactions suppressed by powers of E/M

"Top-down": heavy particle exchange generates new local interaction

But one can take a "bottom-up" approach, too, in order to infer properties of underlying new physics. (This is the SMEFT approach)

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_F = G_F^{-1/2} \sim 250 \text{ GeV}$ Fermi's theory of beta decays (n \rightarrow p e \overline{v}_e):

Postulate new local interaction (that respects Lorentz invariance and charge conservation) in terms of "light" degrees of freedom (n,p,e,V_e):

 $H \sim G_F \overline{p} \Gamma n \overline{e} \Gamma V_e$

Coupling constant $G_F = 1/\Lambda_{F^2}$ determined by fitting the "slow" beta decay rates \Rightarrow

point to mass scale $\Lambda_F >> m_n \sim GeV$

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_F = G_{F}^{-1/2} \sim 250 \text{ GeV}$

Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ... Lee and Yang: use most general Lorentzinvariant interaction

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_F = G_{F}^{-1/2} \sim 250 \text{ GeV}$ Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ... Lee and Yang: use most general Lorentzinvariant interaction

Experiment: parity is violated! (but could be VA, SP, ...)

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_F = G_{F}^{-1/2} \sim 250 \text{ GeV}$

Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ... Differential decay distributions depend on structure of currents

Model diagnosing!
Example from history

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_F = G_{F}^{-1/2} \sim 250 \text{ GeV}$ Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ...

Marshak & Sudarshan, Feynman & Gell-Mann 1958

It's (V-A)*(V-A) !!

"V-A was the key" S.Weinberg

Example from history

Fermi, 1934

Current-current, parity conserving

Fermi scale: $\Lambda_{\rm F} = G_{\rm F}^{-1/2} \sim 250 ~{\rm GeV}$ Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ...

Marshak & Sudarshan, Feynman & Gell-Mann 1958

Glashow, Salam, Weinberg

Sheldon Lee Glashow

Steven Weinberg

Abdus Salam

chiral gauge theory, predict neutral currents

23

Example from history

Lessons: nuclear beta decays were able to

- "Detect" physics originating at $\Lambda_F = G_F^{-1/2} \sim 250 \text{ GeV} >> E_{exp}$
- Point to key features of the underlying interactions, that led to the formulation of the Standard Model

Current-current, parity conserving

e

Ρ

Fermi scale: $\Lambda_{\rm F} = G_{\rm F}^{-1/2} \sim 250 \, {\rm GeV}$ e

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ...

Glashow

Fast forward ~60 years: SMEFT

• Describe effects of new physics originating at $\Lambda >> \Lambda_F \sim v_{ew}$ through local operators (the low-energy footprints of heavy states)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$
$$[\Lambda \leftrightarrow \mathsf{M}_{\text{BSM}}] = C_{i} [g_{\text{BSM}}, M_{a}/M_{b}]$$

- "Standard Model EFT" (SMEFT):
 - ★ Build operators out of SM fields
 - ★ Impose Lorentz + SM gauge symmetry, but no other symmetry (B, L, CP, flavor)
 - * Organize operators according to mass dimension: power counting in E/Λ , M_W/Λ . At a given order the EFT is renormalizable and predictive

Fast forward ~60 years: SMEFT

• Describe effects of new physics originating at $\Lambda >> \Lambda_F \sim v_{ew}$ through local operators (the low-energy footprints of heavy states)

Fast forward ~60 years: SMEFT

• Describe effects of new physics originating at $\Lambda >> \Lambda_F \sim v_{ew}$ through local operators (the low-energy footprints of heavy states)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$
$$[\Lambda \leftrightarrow \mathsf{M}_{\text{BSM}}] = C_{i} [g_{\text{BSM}}, M_{a}/M_{b}]$$

- Other EFTs differ in particle content and/or symmetry realization
 - **vSMEFT**: SMEFT + v_R
 - HEFT: EFT for G.B ~ ChPT. Higgs h is a singlet. More general Higgs potential

Why use EFTs for new physics

- General framework encompassing classes of models
- Efficient tool to analyze and compare experiments at different scales (from collider to table-top)
- The steps below UV scale Λ apply to all models: in particular, the hadronic / nuclear aspects can be treated once and for all...
- Very useful diagnosing tool in this "pre-discovery" phase
- Inform model building (success story provided by the SM itself).
 EFT and model approaches are not mutually exclusive!

Some details on the SM(EFT)

The Standard Model in pictures

Spin 1/2: ordinary matter + 2 heavier generations

Spin I: force carriers

Interactions governed by gauge symmetry principle $SU(3)_c \times SU(2)_W \times U(1)_Y$

 \sim **g**₃, **g**₂, g₁

$${\cal L}_I(x) \sim J_\mu(x) \, A^\mu(x)$$

The Standard Model in pictures

Spin 1/2: ordinary matter + 2 heavier generations

Spin I: force carriers

Interactions governed by gauge symmetry principle $SU(3)_c \times SU(2)_W \times U(1)_Y$

The Standard Model in pictures

Spin 0: Higgs boson

Spin 1/2: ordinary matter + 2 heavier generations

Spin I: force carriers

Interactions governed by gauge symmetry principle $SU(3)_c \times SU(2)_W \times U(1)_Y$

Higgs mechanism

Massive EW gauge bosons (short range weak force)

SM(EFT): building blocks

- Gauge group: $G = SU(3)_c \times SU(2)_W \times U(1)_Y$
- Building blocks: fields and their "charges" (transformation properties under G)

	SU(3) _c x SU(2) _W x U(1) _Y representation: (dim[SU(3) _c], dim[SU(2) _W], Y)	SU(2) _W transformation			SU(3) _c x SU(2) _W x U(1) _Y representation
$l = \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$	(<mark> ,2,- /2)</mark>	$l \to V_{SU(2)} l$	gluons:	G^A_μ , $A = 1 \cdots 8$, $G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu + g_s f_{ABC} G^B_\mu G^C_\nu$	(<mark>8,1,</mark> 0)
$e = e_R$	(<mark> </mark> , ,-)		W bosons:	W^I_{μ} , $I=1\cdots 3$,	(130)
$q^i = \left(\begin{array}{c} u_L^i \\ d_L^i \end{array}\right)$	(<mark>3,2</mark> ,1/6)	$q \to V_{SU(2)} q$	B boson:	$- W^{I}_{\mu\nu} = \partial_{\mu}W^{I}_{\nu} - \partial_{\nu}W^{I}_{\mu} + g\varepsilon_{IJK}W^{J}_{\mu}W^{K}_{\nu}$ $B_{\mu},$	(1,5,0)
$u^i = u^i_R$	(3, 1 ,2/3)			$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}.$	(1,1,0)
$d^i = d^i_R$	(3,1,-1/3)				
$\varphi = \left(\begin{array}{c} \varphi^+ \\ \varphi^0 \end{array}\right)$	(, 2 , /2)	$\varphi \to V_{SU(2)} \varphi$	Gauge trans	sformation: $ \begin{array}{cccc} W^{I}_{\mu\nu} \frac{\sigma^{*}}{2} & \longrightarrow & V(x) & \left[W^{I}_{\mu\nu} \frac{\sigma^{*}}{2}\right] & V^{\dagger} \\ V(x) &= & e^{ig\beta_{a}(x)\frac{\sigma_{a}}{2}} \end{array} $	(x)

 $Q = T_3 + Y$

SM(EFT): building blocks

- Gauge group: $G = SU(3)_c \times SU(2)_W \times U(1)_Y$
- Building blocks: fields and their "charges" (transformation properties under G)

	$\begin{split} SU(3)_c & \times SU(2)_W \times U(1)_Y \text{ representation:} \\ & (\dim[SU(3)_c], \dim[SU(2)_W], \ Y) \end{split}$	SU(2)w transformation			$SU(3)_c \times SU(2)_W \times U(1)_Y$ representation
$l = \left(\begin{array}{c} \nu_L \\ e_L \end{array}\right)$	(1,2,-1/2)	$l \to V_{SU(2)} l$	gluons:	G^A_μ , $A = 1 \cdots 8$, $G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu + g_s f_{ABC} G^B_\mu G^C_\nu$	(<mark>8, 1,</mark> 0)
$e = e_R$	(, ,-)		W bosons:	W^I_μ , $I=1\cdots 3$,	(130)
$q^i = \left(\begin{array}{c} u_L^i \\ d_L^i \end{array}\right)$	(<mark>3,2,1/6</mark>)	$q \to V_{SU(2)} q$	B boson:	$W^{I}_{\mu\nu} = \partial_{\mu}W^{I}_{\nu} - \partial_{\nu}W^{I}_{\mu} + g\varepsilon_{IJK}W^{J}_{\mu}W^{K}_{\nu}$ $B_{\mu},$	(1,5,0)
$u^i = u^i_R$	(<mark>3</mark> , I, 2/3)			$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}.$	(1,1,0)
$d^i = d^i_R$	(<mark>3, , - /3)</mark>				
$\varphi = \left(\begin{array}{c} \varphi^+ \\ \varphi^0 \end{array}\right)$	(,2, /2)	$\varphi \to V_{SU(2)} \varphi$	Gauge trans	formation: $ \begin{bmatrix} W_{\mu\nu}^{I} \frac{\sigma^{*}}{2} \longrightarrow V(x) \begin{bmatrix} W_{\mu\nu}^{I} \frac{\sigma^{*}}{2} \end{bmatrix} V^{\dagger} \\ V(x) = e^{ig\beta_{a}(x)\frac{\sigma_{a}}{2}} $	(x)

$Q = T_3 + Y$

- Recipe to build Standard Model Lagrangian: write down all operators of mass dimension $\leq 4^{**}$ that respect gauge and Lorentz symmetry
- SMEFT: go beyond dimension 4

The SMEFT Lagrangian: dim=4

$$\mathcal{L}_{SM} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$$

$$D_{\mu} = I \partial_{\mu} - ig_s \frac{\lambda^A}{2} G^A_{\mu} - ig \frac{\sigma^a}{2} W^a_{\mu} - ig' Y B_{\mu}$$

$$\mathcal{L}_{\text{Gauge}} = -\frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$
$$+ \sum_{i=1,2,3} \left(i\bar{\ell}_i \not{D}\ell_i + i\bar{e}_i \not{D}e_i + i\bar{q}_i \not{D}q_i + i\bar{u}_i \not{D}u_i + i\bar{d}_i \not{D}d_i \right)$$

The SMEFT Lagrangian: dim=4

$$\mathcal{L}_{SM} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$$

$$D_{\mu} = I \partial_{\mu} - ig_s \frac{\lambda^A}{2} G^A_{\mu} - ig \frac{\sigma^a}{2} W^a_{\mu} - ig' Y B_{\mu}$$

This Lagrangian has a large flavor symmetry group: U(3)⁵.
 Nothing distinguishes the three families.

The SMEFT Lagrangian: dim=4

$$\mathcal{L}_{SM} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$$

$$D_{\mu} = I \partial_{\mu} - ig_s \frac{\lambda^A}{2} G^A_{\mu} - ig \frac{\sigma^a}{2} W^a_{\mu} - ig' Y B_{\mu}$$

$$\mathcal{L}_{\text{Gauge}} = -\frac{1}{4} G^{A}_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$+ \sum_{i=1,2,3} \left(i\bar{\ell}_{i} \not{D} \ell_{i} + i\bar{e}_{i} \not{D} e_{i} + i\bar{q}_{i} \not{D} q_{i} + i\bar{u}_{i} \not{D} u_{i} + i\bar{d}_{i} \not{D} d_{i} \right)$$

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\varphi)^{\dagger} (D^{\mu}\varphi) - \lambda (\varphi^{\dagger}\varphi - v^{2})^{2} \xrightarrow{\text{EVSB}} \langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \varphi \rangle = \langle \psi \rangle$$

$$\langle \varphi \rangle = \langle \psi \rangle$$

• Y_{e,u,d} matrices are the only couplings that distinguish the three families

Standard Model symmetries (1)

• Gauge symmetry: color is manifest, SU(2)xU(1) is hidden (Higgs mechanism)

Standard Model symmetries (1)

- Gauge symmetry: color is manifest, SU(2)xU(1) is hidden (Higgs mechanism)
- Global internal symmetries:
 - U(3)⁵ explicitly broken only by Yukawa couplings*
 - U(I) associated with B, and $L_{\alpha=e,\mu,\tau}$ survive (hence $L = L_e + L_{\mu} + L_{\tau}$)
 - Anomaly: only B-L is conserved

* Approximate global symmetries: Flavor $SU(n)_L x SU(n)_R$ (n=2,3), ...

Standard Model symmetries (1)

- Gauge symmetry: color is manifest, SU(2)xU(1) is hidden (Higgs mechanism)
- Global internal symmetries:
 - U(3)⁵ explicitly broken only by Yukawa couplings*
 - U(I) associated with B, and $L_{\alpha=e,\mu,\tau}$ survive (hence $L = L_e + L_{\mu} + L_{\tau}$)
 - Anomaly: only B-L is conserved
- Discrete symmetries:
 - P, C maximally violated by weak interactions
 - CP (and T) violated by CKM (and QCD theta term): specific pattern of CPV in flavor transitions and EDMs

* Approximate global symmetries: Flavor $SU(n)_L x SU(n)_R$ (n=2,3), ...

Standard Model symmetries (2)

- Global symmetries such as B and $L_{\alpha=e,\mu,\tau}$ are not an input in the construction of the model, rather an *outcome* that depends on the field content and the fact that we included only operators up to dimension 4
- Weinberg called these "accidental symmetries"
- Accidental symmetries are typically broken by higher dimensional operators obeying Lorentz and Gauge invariance

Standard Model symmetries (2)

- Global symmetries such as B and $L_{\alpha=e,\mu,\tau}$ are not an input in the construction of the model, rather an *outcome* that depends on the field content and the fact that we included only operators up to dimension 4
- Weinberg called these "accidental symmetries"
- Accidental symmetries are typically broken by higher dimensional operators obeying Lorentz and Gauge invariance

Accidental symmetries and symmetries broken in a very specific way in the SM (flavor, CP) offer great opportunity to probe physics beyond the SM

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

• Dim 5: only one operator

Weinberg 1979

$$\varphi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} \quad \ell = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \qquad \hat{O}_{\text{dim}=5} = \ell^T C \epsilon \varphi \ \varphi^T \epsilon \ell \qquad \qquad C = i\gamma_2 \gamma_0 \\ \epsilon = i\sigma_2 \end{cases}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

• Dim 5: only one operator

Weinberg 1979

- Violates total lepton number $\ell \to e^{i\alpha} \ell \qquad e \to e^{i\alpha} e$
- Generates Majorana mass for L-handed neutrinos (after EWSB)

$$\frac{1}{\Lambda}\hat{O}_{\text{dim}=5} \qquad \xrightarrow{\langle\varphi\rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}} \qquad \frac{v^2}{\Lambda}\nu_L^T C \nu_L$$

• "See-saw": $m_{\nu} \sim 1 \,\mathrm{eV} \rightarrow \Lambda \sim 10^{13} \,\mathrm{GeV}$

• Example: explicit realization of dimension-5 operator in models with heavy R-handed Majorana neutrinos

$$\mathcal{L}_5 = \mathbf{g}_{\alpha\beta} \ \ell_{\alpha}^T C \epsilon \varphi \ \varphi^T \epsilon \ell_{\beta}$$

 Dim 6: affect many processes (59 structures not including flavor → 2499 if one counts flavor structures)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Dim 6: affect many processes
 - B violation ($\Delta B = \Delta L = I$)

Weinberg 1979 Wilczek-Zee1979 Buchmuller-Wyler 1986, Grzadkowski-Iskrzynksi-Misiak-Rosiek (2010)

- Gauge and Higgs boson couplings [LHC as a precision frontier tool!]
- CPV, LFV, qFCNC, ...
- Corrections to g-2, Charged Currents, Neutral Currents, ...
- EFT beyond tree-level: one-loop *running of effective couplings* is known

Full dim-6 operator basis (1)

ſ	_						\bigcirc		
			X^3		φ^6 and $\varphi^4 D^2$			$\psi^2 arphi^3$	
3		Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$		$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
\sim		$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	0)	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
s not	2	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D^{\mu}\varphi\right)$	$D_{\mu}\varphi)$	Q_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
		$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						
			$X^2 \varphi^2$		$\psi^2 X \varphi$			$\psi^2 \varphi^2 D$	
		$Q_{arphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi V$	$V^{I}_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
		$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B$	μν	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
~_		$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi}$	$G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
NON		$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi}$	$W^{I}_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
~~~~	4	$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	$Q_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} E$	3 _{μν}	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
		$Q_{arphi \widetilde{B}}$	$arphi^{\dagger} arphi  \widetilde{B}_{\mu u} B^{\mu u}$	$Q_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi$	$G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
		$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi  W^I_{\mu\nu} B^{\mu\nu}$	$Q_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi$	$W^{I}_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
		$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi  \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	$Q_{dB}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi E$	$B_{\mu\nu}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
					<ul><li></li></ul>				
		$\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi$	$\varphi \equiv i\varphi^{\dagger}\left(D_{\mu} - \overleftarrow{D}_{\mu}\right)\varphi$		Ì``, Ş		$\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}$	$\varphi \equiv i\varphi^{\dagger} \left(\tau^{I} D_{\mu} - \overleftarrow{D}_{\mu} \tau\right)$	$-^{I} \Big) \varphi$

#### Grzadkowski-Iskrzynksi-Misiak-Rosiek (2010) 1008.4884

#### Full dim-6 operator basis (2)

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$		
$Q_{ll}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	$Q_{ee}$	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	$Q_{le}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	X	
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	$Q_{uu}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{lu}$	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$ /		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{dd}$	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{ld}$	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{eu}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{qe}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{ed}$	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
$Q_{ledq}$	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	$Q_{duq}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha})^TCu_r^{eta} ight]\left[(q_s^{\gamma j})^TCl_t^k ight]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})\right]$	$^{T}Cq_{r}^{\beta k}$	$\left[ (u_s^{\gamma})^T C e_t \right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[ Cq_{r}^{\beta k} \right] \left[ (q_{s}^{\gamma m})^{T} Cl_{t}^{n} \right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	$Q_{duu}$	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$Cu_r^{\beta}$	$\left[(u_s^{\gamma})^T C e_t\right]$		

### Full dim-6 operator basis (2)

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$		
$Q_{ll}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	$Q_{ee}$	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	$Q_{le}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		X
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	$Q_{uu}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{lu}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{dd}$	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{ld}$	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	$Q_{eu}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{qe}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{ed}$	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u)$	$\iota_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_s)$	$l_t)$	
Homework							

- Find which dim.6 operators may affect the process you are studying (as an experimentalist or a theorist)
- What type of UV models can generate those operators? (Useful info in de Blas et al, 1711.10391)

# Bridging scales: a tower of EFTs Connecting scales To connect UV physics to low-energy processes, use multiple EFTs



# Bridging scales: a tower of EFTs Connecting scales To connect UV physics to low-energy processes, use multiple EFTs



- A (very) rough indication of discovery potential is given by reach in  $\Lambda$
- Effective scale probed by an experiment can be obtained through this equation:

Contribution to observable 'O' induced by SMEFT operators 
$$\delta O_{\rm BSM}(\Lambda) \leq (O_{\rm exp} - O_{\rm SM})$$
 (for any observable 0,  $\delta O_{\rm BSM} \sim (v/\Lambda)^n n=2,4,...)$ 

- A (very) rough indication of discovery potential is given by reach in  $\Lambda$
- Effective scale probed by an experiment can be obtained through this equation:





Λ ~ maximal scale probed by a given measurement, obtained by assuming O(I) couplings (for all probes) and one-loop factor for g-2, EDMs, LFV, FCNC



Λ ~ maximal scale probed by a given measurement, obtained by assuming O(I) couplings (for all probes) and one-loop factor for g-2, EDMs, LFV, FCNC
### What scales are we probing?



Λ ~ maximal scale probed by a given measurement, obtained by assuming O(I) couplings (for all probes) and one-loop factor for g-2, EDMs, LFV, FCNC

# Backup

## (Incomplete) List of acronyms

- ALPs: Axion-Like Particles
- BNV: Baryon Number Violation
- CC: (weak) charged current
- CP: Charge-Parity
- CPV: CP Violation
- EDM: Electric Dipole Moment
- EFT: Effective Field Theory
- FCNC: Flavor Changing Neutral Currents
- IR: infrared
- LEFT: Low Energy EFT (below the weak scale)
- LFV: Lepton Flavor Violation
- LNV: Lepton Number Violation
- NC: (weak) neutral current
- SM: Standard Model
- SMEFT: Standard Model EFT
- UV: ultraviolet

#### Anomalous symmetry breaking

• Action is invariant, but path-integral measure is not!

$$\int [d\psi] [d\bar{\psi}] \ e^{iS[\psi,\bar{\psi}]}$$
$$\psi \to \psi' \qquad \bar{\psi} \to \bar{\psi}'$$

$$S[\psi, \bar{\psi}] = S[\psi', \bar{\psi}']$$
$$\int [d\psi] [d\bar{\psi}] = \int [d\psi'] [d\bar{\psi}'] \mathcal{J} \qquad \qquad \mathcal{J} \neq 1$$

#### Anomalous symmetry breaking

• Action is invariant, but path-integral measure is not!

$$\int [d\psi] [d\bar{\psi}] \ e^{iS[\psi,\bar{\psi}]}$$

$$\int [d\psi] [d\bar{\psi}] \ e^{iS[\psi,\bar{\psi}]}$$

$$\int [d\psi] [d\bar{\psi}] = \int [d\psi'] [d\bar{\psi}'] \mathcal{J} \qquad \mathcal{J} \neq 1$$

$$\psi \to \psi' \qquad \bar{\psi} \to \bar{\psi}'$$

- Important examples: trace (scale invariance) and chiral anomalies
- Baryon (B) and Lepton (L) number are anomalous in the SM

• Only B-L is conserved; B+L is violated (large rates at high temperature)